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Abstract

Using a hierarchy of three models of increasing realism and complexity, and ex-

panding on a previous study, optimal perturbations to inertia-gravity wave (IGW)

packets are studied with respect to several aspects. It is shown that normal modes

are comparatively less able to extract energy from the IGW over finite time due to

their time-invariant structure, while singular vectors (SV) can adjust their dynami-

cal fields flexibly so as to optimize the statically enhanced roll and Orr mechanisms

by which they grow. On longer time scales, where the time dependence of the

IGW packet precludes a normal-mode analysis, optimal growth is found to further

amplify suitable perturbations. The propagation characteristics of these exhibit

critical-layer interactions for horizontal propagation directions transverse with re-

spect to the IGW, preventing significant vertical propagation, while parallel and

obliquely propagating perturbations of sufficiently long horizontal scales are found

to radiate gravity waves into altitudes not directly affected by the IGW. SV with

shorter wavelengths, as found for short optimization times, stay confined via a lin-

ear wave duct near the altitude of least static stability where they are excited. At

optimization times of the order of the IGW period the leading SV, with an en-

ergy growth by about three orders of magnitude, propagate obliquely, possibly in

correspondence to previous results by others from simulations of nonlinear IGW

breakdown. The three-dimensional structure of SV shows an amplitude modulation

strictly confining the perturbations also to the horizontal location of least static sta-

bility, suggesting a picture of turbulence onset in IGW packets where local patches

of growing perturbations dominate initially.
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1 Introduction

In an examination of the possibility of rapid transient growth of perturbations to an

upwardly propagating inertia-gravity wave (IGW) packet in the mesosphere we have re-

cently identified corresponding optimal perturbations (Achatz and Schmitz, 2005, hence-

forth called AS). These are to be distinguished from the normal modes (NM) calculated

by Fritts and Yuan (1989), Yuan and Fritts (1989), Dunkerton (1997), and Kwasniok

and Schmitz (2003). While in the parameter range examined we have found, in basic

agreement with similar results by Yau et al. (2004), normal modes to grow at most only

very weakly at wave amplitudes below the static instability limit, optimal perturbations

and the hence developing singular vectors (SV) are seen to still exhibit an energy gain

by nearly a factor 100 within one Brunt-Vaisala period. Therefore optimal perturbations

might be more appropriate for describing the incipient turbulence onset in a subcritical

IGW. At least in part, frequent rocket measurements of considerable turbulent dissipation

rates in a statically stable environment (Lübken, 1997) could eventually also be attributed

to the hence ensuing wave breaking.

With the intention to deepen our understanding of subcritical IGW instability we

expand in this study on the results of AS. First, due to space restrictions the mechanism

by which the identified patterns extract their energy from the basic IGW packet had been

given only limited attention. It seems worthwhile to look explicitly at the relevant energy

exchange terms in their time development and examine what they can teach us about

the process. This can also be seen as a good preparation for the second issue treated

here. Since AS has its focus on rapid transient development over very short time scales of

the order of the Brunt-Vaisala period, an obvious open question is that about the long-
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term development of the optimal perturbations found there, as well as how they change

as the optimization time is varied over which their energy growth is optimal. Finally

the previous work has been restricted to the analysis of vertical profiles of flow field and

buoyancy obtained from an IGW packet at the horizontal location where, based on total

Brunt-Vaisala frequency and local Richardson number, it might be assumed to be least

stable. In this approximation the horizontal structure of the optimal perturbations is

that of a plane monochromatic wave propagating at some azimuth angle α with respect

to the basic IGW. Driven by the transverse-wind shear in the basic wave via a statically

amplified roll mechanism, relate to the one discussed by Farrell and Ioannou (1993a,b)

and Bakas et al. (2001), we found, for slightly subcritical IGW with intermediate ratios

R = f/ω between local coriolis parameter and wave frequency, parallel perturbations

(α = 0◦) to amplify most vigorously over one Brunt-Vaisala period. Their scales are

rather short (a few 100 m for an IGW with 6 km vertical wavelength), while transverse

optimal perturbations (α = 90◦), to some part subject to energy input from the IGW

via a statically amplified Orr mechanism, are longer in scale (a few km). An obvious

question we want to address here is what remains of these patterns as one analyzes the

fully two-dimensional and time-dependent IGW packet.

We have organized the paper as follows: Section 2 describes our model hierarchy

and introduces the problem in general. In section 3 we discuss the energetics of SV in

the stratified-shear layer approximation of the IGW, while in section 4 the results are

generalized to the analysis of SV for a time dependent vertical profile of IGW at the

horizontal location of least initial static stability, allowing also the treatment of long

optimization times. Section 5 further moves to the analysis of an IGW packet with its
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full horizontal dependence, and section 6 summarizes and discusses the results.

2 Singular vectors for an IGW in a Boussinesq fluid

Only a very short sketch is given here of our model environment and the concept of

singular vectors within it. For details readers are referred to AS and the literature cited

there.

2.1 Model and IGW packet

The equations we are using are the three-dimensional viscous Boussinesq equations with

thermal diffusivity on an f plane. The model variables comprise the three-dimensional

velocity field v̂ = (û, v̂, ŵ) and buoyancy b̂ = g(θ̂ − θ(z))/θ0. Here θ̂ denotes poten-

tial temperature, θ(z) a merely vertically dependent reference profile, and θ0 a constant

characteristic value. The reference potential temperature also defines the squared back-

ground Brunt-Vaisala frequency N2 = (g/θ0)dθ/dz, where g is the vertical gravitational

acceleration. For viscosity ν and thermal diffusivity µ we use the typical mesospheric

values ν = µ = 1m2/s. The f plane is located at 45◦ N latitude. N = 10−2s−1 is our

Brunt-Vaisala frequency1. The model equations have been discretized using second-order

finite central differences on a staggered C grid (Tapp and White, 1976). The bound-

ary conditions are triply periodic. It was always made sure that the boundaries are far

enough from the instability in order not to affect our results. Monochromatic gravity

waves are an exact solution of the nonlinear Boussinesq equations. Among these, waves

1This is a rather low value for the mesosphere which has, however, also been used by others (e.g.

Fritts et al., 2003). Our results are not much affected by this choice (Achatz and Schmitz, 2005).
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with a nearly vertical wavenumber vector are strongly influenced by the Coriolis effect,

leading to a near-inertial period, an elliptic polarization of the horizontal velocity field,

and a negligible component in the vertical wind. From the structure of such an upwardly

propagating wave with typical observed wavelengths (in x direction Λx = 500 km, and

in the vertical Λz = 3 km, 6 km, or 9 km) an initial wave packet has been formed by

means of a gaussian envelope with half-width Λz which then has been integrated in the

nonlinear Boussinesq equations. The initial wave phase was chosen so that x = Λx/2 is

the horizontal location where the initial vertical wave profile exhibits least static stability.

Vertically, the wave packet maximum and location of least static stability is initially right

at the center of the model, i.e. at z = 0. The resulting time-dependent wave packet is

denoted by
(
v̂, b̂

)
= (V0, B0) (x, z, t).

Now let
(
v̂, b̂

)
(x, t) = (V0, B0) (x, z, t) + (v′, b′) (x, t) be a decomposition of an arbi-

trary model trajectory into IGW packet and perturbation. We study the dynamics of the

perturbation by linearizing the equations about the IGW packet. The latter is symmetric

in y so that we can use the ansatz (v′, b′, p′) = (v, b, p) (x, z) exp (ily) with an arbitrary

wavenumber l, while p′ denotes pressure. This yields

∇2 · v = 0 (1)

Dv

Dt
+ u

∂V0

∂x
+ w

∂V0

∂z
+ fez × v +∇2p− ezb = ν∇2

2v (2)

Db

Dt
+ u

∂B0

∂x
+ N2

totw = µ∇2
2b , (3)

where ez is the vertical unit vector, ∇2 = (∂/∂x, il, ∂/∂z), D/Dt = ∂/∂t + V0 · ∇2, and

N2
tot = N2 + ∂B0/∂z.

In AS we used two simplifications of these equations. In the first we assumed the

IGW field to be horizontally symmetric, with the same values as the vertical profile at
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x = Λx/2, i.e. at the statically least stable horizontal location at t = 0, and further

assumed W0 = 0. We further neglected the time dependence of the IGW, which will not

be done here. For the horizontally symmetric profile one can use the ansatz (v′, b′, p′) =

(v, b, p)(x, z) exp[i(kx + ly)]. Usually we express the horizontal wavenumber vector of the

perturbation as (k, l) = k‖(cos α, sin α) in terms of parallel wavenumber k‖ and azimuth

angle α. For the analysis it is further useful to use rotated horizontal coordinates
(
x‖, y⊥

)

pointing in the direction of the horizontal perturbation wave vector and perpendicular

to it. The corresponding velocity components being
(
u‖, v⊥

)
for the perturbation and

(
U‖, V⊥

)
for the IGW one can also introduce streamfunction ψ and related vorticity

ζ = (k2
‖ − ∂2/∂z2)ψ so that (u‖, w) = (−∂/∂z, ik‖)ψ.

In the final level of simplification we assumed the vertical profile to be given by the

tangents at the statically least stable altitude, i.e. (U0, V0, N
2
tot) = [u0, βz, N2 (1− a)]

with u0 = aΩ−/K and β = afM/K, where a is the IGW amplitude at z = 0 with respect

to static instability, (K, M) = (2π/Λx, 2π/Λz) its two-dimensional wave vector, and Ω− =

− (N2K2 + f 2M2)
1/2

/ (K2 + M2)
1/2

its frequency. In this stratified constant-shear layer

we then set (ψ, ζ, v⊥, b) (z, t) =
∫∞
−∞ dm (ψm, ζm, vm, bm) (t) exp

[
i
(
mtz − k‖uct

)
−D

]
with

βs,c = β(sin α, cos α) and uc = uo cos α, mt = m − k‖βst a time dependent vertical

wavenumber, and D = ν
∫ t
0 dτK2

t (τ) the viscous-diffusive damping increment (assuming

µ = ν), while K2
t = k2

‖ + m2
t , and ζm = K2

t ψm, thus obtaining decoupled equations for

each combination of ψm, vm, and bm. For N2
tot = N2 optimal growth in a corresponding

stratified shear layer has been studied by Farrell and Ioannou (1993a) and Bakas et al.

(2001), whose results are here used and expanded upon.
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2.2 Singular vectors

Following Farrell (1988a,b) the leading optimal perturbation (v′, b′)(x, t = 0) to the time

dependent IGW packet is that among all possible ones maximizing within the linear model

the relative energy growth E(τ)/E(0) between initialization and some predefined time τ ,

where E = 1/2
∮
V dV (|v′|2 + b′2/N2). The time-dependent singular vectors resulting from

the initial optimal perturbations are to be distinguished from the better known normal

modes which have a time dependence ∝ exp [−i (ω + iγ) t] with eigenfrequency ω and

growth rate γ. Leading normal mode and leading singular vector only coincide for a

time-independent background, and as t → ∞. Provided transient growth considerably

more rapid than that of normal modes can be identified by the analysis the corresponding

structures seem better qualified for a description of the initial instability of an IGW

packet. One observes that normal modes always have the same oscillating structure

which is simply growing or decaying in time. This is not the case for singular vectors.

Their structure can differ quite a lot between initialization and subsequent time. As a

consequence, the exchange processes between perturbation and background responsible

for the change in amplitude are always the same for a normal mode, while they can vary

considerably in the development of a singular vector. This leads to a higher efficiency in

the finite-time energy exchange between perturbation and IGW packet, so that optimal

perturbations often can grow much more rapidly than normal modes.
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3 Energetics and temporal development in the stratified-

shear-layer approximation

For each combination of k and l, i.e. k‖ and α, and m in the stratified shear layer energy

is given by Eklm =
(
K2

t |ψm|2 + |vm|2 + |bm|2 /N2
)

exp (−2D) /2, for which one can derive

from the model equations given in AS

dEklm

dt
= r‖ + r⊥ + rb + rd (4)

r‖ = mtk‖βs |ψm|2 e−2D (5)

r⊥ = −k‖βc=
(
vmψm

)
e−2D (6)

rb = k‖

(
1− N2

tot

N2

)
=

(
bmψm

)
e−2D (7)

rd = −2νK2
t Eklm , (8)

containing successively the Reynolds exchange terms due to the fluxes of momentum in x‖-

and y⊥-direction and of buoyancy against the respective gradients in the shear layer, and

viscous-diffusive damping. Defining an instantaneous growth rate Γ = (1/2Eklm) (dEklm/dt)

one obtains the respective components Γ‖, Γ⊥, Γb, and Γd. On the basis of these terms

the time development of the leading optimal perturbations is analyzed, focussing on the

two cases of parallel (α = 0◦) and transverse (α = 90◦) propagation where simple closed

analytic solutions of the initial-value problem exist.
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3.1 Parallel singular vectors

In the limit β2/ |Ntot|2 = 1/ |Ri| À 1 À |Ntot|2 /N2 it is shown in AS that the leading

parallel singular vector is for some complex av

ψm =
av

2K0

|Ntot|
|β|

Ntot

|Ntot|
β

|β|
(
eiφ − e−iφ

)
(9)

bm = −av

2
N
|Ntot|
|β|

Ntot

N

Ntot

|Ntot|
β

|β|
(
eiφ + e−iφ

)
(10)

vm = −av

2

(
eiφ + e−iφ

)
+ av , (11)

where K2
0 = k2

‖ +m2, and φ = Ω̂t with Ω̂ = Ntotk‖/K0. From βs = 0 follows r‖ = 0. From

(9)–(11) one derives for a < 1 under consistent assumptions

Eklm =
|av|2

2
e−2D

[
4 sin4

(
Ω̂

2
t

)
+ |Ri| |Ntot|2

N2

]
(12)

r⊥ = 2
k‖
K0

|Ntot| |av|2 e−2D sin
(
Ω̂t

)
sin2

(
Ω̂

2
t

)
(13)

rb = |Ri| k‖
K0

|Ntot|
(

1− N2
tot

N2

) |av|2
2

e−2D sin
(
2Ω̂t

)
, (14)

where in (12) the small term |Ri| |Ntot|2 /N2 has been kept for consistency with the cal-

culated growth factor, while in (14) N2
tot/N

2 has not been neglected in comparison with

1 in order to ensure that rb = 0 for N2
tot = N2. For a < 1 one thus sees the energy of

the singular vectors to perform a damped oscillation with period T = 2π/Ω̂. Note that

for the perturbation growing at fixed m most strongly over the optimization time τ one

has for τ > 2π/Ntot the identity Ω̂τ = π (see AS) and hence T = 2τ . Similar oscillatory

behavior is exhibited by the exchange terms. Generally r⊥ is the larger term besides near

t = nT for some integer n, where both vanish but r⊥ has zero time derivative and thus

the increase in rb is steeper.

The corresponding relations for a > 1 are obtained by the replacements sin → sinh

and Ω̂ →
∣∣∣Ω̂

∣∣∣. Then no oscillation results but a convergence of the total growth rate
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towards that of the corresponding normal mode, i.e. Γ →
∣∣∣Ntotk‖/K0

∣∣∣, which is due to

the convergence of the optimal perturbation towards the structure of the normal mode.

It is interesting to observe that as a result of the strong normal-mode component in v⊥,

induced by the shear gradient, Γb/Γ⊥ = rb/r⊥ → |Ri| (1−N2
tot/N

2) ¿ 1 although the

total growth rate of the normal mode is not influenced by the shear. The exact growth-

rate decomposition, obtained from an integration of the exact optimal perturbations (i.e.

at optimal k‖) at λz = 2π/m = 0.1Λz = 600 m and four representative combinations of a

and τ , is shown in figure 1. Note that in the case (a, τ) = (0.9, 10min) the optimal value

of k‖ ≈ 2π/380m yields T ≈ 3.9τ , which is in quite good agreement with the observed

exact behavior.

3.2 Transverse singular vectors

As discussed in AS the time-dependent leading transverse singular vector is a two-dimensional

structure in the velocity field. On has vm = 0, and in a WKB approximation in the limit

|Ntot|2 /N2 ¿ 1 for some complex a+

ψm = −a+
g3/4

K0

(
eiφ − e−iφ

)
(15)

bm = a+Ntotg
1/4

(
eiφ + e−iφ

)
(16)

with g = K2
0/K

2
t and φ(t) =

∫ t
0 dt′Ntotk‖/Kt(t

′). One obtains generally r⊥ = 0 (since

βc = 0), and for a < 1

Eklm = 2g1/2 |a+|2 e−2D

(
sin2 φ +

|Ntot|2
N2

cos2 φ

)
(17)

r‖ = 4g3/2k‖mt

K2
0

β |a+|2 e−2D sin2 φ (18)

rb = 2g
k‖
K0

|Ntot|
(

1− N2
tot

N2

)
|a+|2 e−2D sin 2φ . (19)
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The corresponding relations for a > 1 result from the replacements (cos, sin) → (cosh, sinh)

and φ → |φ|. One sees that for |Ri| ¿ 1 growth and decay are generally dominated by r‖.

As also discussed in AS, at fixed initial vertical wavenumber m largest growth over τ is

obtained at k‖ = m/βτ , implying mt = m (1− t/τ) so that decay sets in at t = τ . Only

near t = 0, when both r‖ and rb approximately vanish, the latter dominates since the

former there has zero time derivative. The large-time asymptotic behavior, incorrectly

predicted by the WKB approximation, is best determined directly from the model equa-

tions (see AS) whence one finds, similarly to Farrell and Ioannou (1993a), that (ψm, bm) ∝

t
√

1/4−N2
tot/β2−1/2 (t−1, 1) for t → ∞ so that Eklm ∝ t

√
1−4N2

tot/β2−1 exp (−2D). Thus even

in the absence of viscosity and diffusion energy eventually decays for a < 1, while for a > 1

a final decay is caused by viscous-diffusive damping. For the same four cases as used before

the exact time-dependent growth-rate decomposition of the optimally growing perturba-

tion (i.e. with optimal k‖) is shown in figure 2. One sees that the relative importance of Γb

decreases with increasing τ , which can be understood by noting that, up to the phase fac-

tors, at the optimal wavenumber rb/r‖ ∝
(√
|Ri|/2

) [
1/β2τ 2 + (1− t/τ)2

]1/2
/ (1− t/τ)

so that near t = 0 the ratio decreases with increasing τ .

3.3 Dependence on azimuth angle

For general azimuth angles the behavior is a transition between the two cases discussed

above. In figure 3 we show for the same four combinations of a and τ as above the exact

time dependence of energy for four representative azimuth angles. One observes for α = 0

the damped oscillation at a < 1, and the exponential divergence at a > 1 which only is

obstructed by viscous-diffusive damping if D >
∣∣∣Ω̂

∣∣∣. For larger azimuth angles one sees at

11



t = τ the peak or sudden reduction of further growth as predicted by WKB theory. The

general large-time asymptotic behavior is similar to the transverse case, i.e. (ψm, bm) ∝

t
√

1/4−N2
tot/β2

s−1/2 (t−1, 1) and vm → vm(t = 0) − βc/N
2
totbm(t = 0) + o

(
t
√

1/4−N2
tot/β2

s−1/2
)

for t → ∞ so that the energy in ψm and bm is ∝ t
√

1−4N2
tot/β2

s−1 exp (−2D) while that in

vm asymptotes towards a constant in the inviscid-nondiffusive limit (following from the

conservation of vm/βc − bm/N2
tot, see also Bakas et al., 2001). In the general case viscous

and diffusive damping eventually prevails since D ∝ t3 for large times, but a transition

phase of algebraic growth at a > 1 for t > τ is visible for the two intermediate azimuth

angles.

4 Energetics and temporal development in the time

dependent 1D profile

In the approximation of the IGW packet following the constant-shear layer picture in

complexity it is approximated by its vertical profile at x = Λx/2. In contrast to AS we

also consider the long-term development of the SV, so that the time-dependence of this

profile is not neglected. Also here the SV dynamics is studied using energy considerations.

From the model equations in AS one finds

∂

∂t

∣∣∣u‖
∣∣∣
2

2
+ <

(
p
∂w

∂z

)
− ν

∂2

∂z2

∣∣∣u‖
∣∣∣
2

2
− f<

(
u‖v⊥

)
= r‖ − ν


k2

‖
∣∣∣u‖

∣∣∣
2
+

∣∣∣∣∣
∂u‖
∂z

∣∣∣∣∣
2

 (20)

∂

∂t

|v⊥|2
2

− ν
∂2

∂z2

|v⊥|2
2

+ f<
(
u‖v⊥

)
= r⊥ − ν


k2

‖ |v⊥|2 +

∣∣∣∣∣
∂v⊥
∂z

∣∣∣∣∣
2

 (21)

∂

∂t

|w|2
2

+ <
(
w

∂p

∂z

)
− ν

∂2

∂z2

|w|2
2

= ebw − ν


k2

‖ |w|2 +

∣∣∣∣∣
∂w

∂z

∣∣∣∣∣
2

 (22)

∂

∂t

|b|2
2N2

− µ
∂2

∂z2

|b|2
2N2

= rb − ebw − µ

N2


k2

‖ |b|2 +

∣∣∣∣∣
∂b

∂z

∣∣∣∣∣
2

 ,(23)
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yielding for the energy density ekl = 1/2
(
|v|2 + |b|2 /N2

)

∂ekl

∂t
+

∂

∂z

[
< (wp)− ν

∂

∂z

|v|2
2
− µ

∂

∂z

|b|2
2N2

]
= r‖ + r⊥ + rb −Dv −Db (24)

with

r‖ = −<
(
u‖w

) ∂U‖
∂z

(25)

r⊥ = −< (v⊥w)
∂V⊥
∂z

(26)

rb = −< (bw)
1

N2

∂B0

∂z
(27)

ebw = < (bw) (28)

Dv = ν


k2

‖ |v|2 +

∣∣∣∣∣
∂v

∂z

∣∣∣∣∣
2

 (29)

Db =
µ

N2


k2

‖ |b|2 +

∣∣∣∣∣
∂b

∂z

∣∣∣∣∣
2

 . (30)

Integrating (24) in the vertical one sees that total energy Ekl =
∮
Lz

dzekl is subject to

changes by the flux of momentum in x‖- and y⊥-direction against the corresponding gra-

dients in the IGW (r‖ and r⊥), the counter-gradient flux of buoyancy (rb), and viscous

and diffusive damping (Dv and Db). In the same manner as above we calculate from these

terms and energy an instantaneous growth rate Γ = 1/ (2Ekl) dEkl/dt and its decomposi-

tion.

4.1 Short optimization times

For the analysis of the dynamics of optimal perturbations at short optimization times

we look at τ = 10 min and focus on the two exemplary cases α = 0◦ and α = 90◦.

Intermediate azimuth angles can be seen as a transition between theses two cases.

13



4.1.1 Parallel SV

In the left column of figure 4 we show for the leading parallel optimal perturbation (i.e.

at optimal horizontal wavelength) energy for a = 0.9 and 1.1, and the growth-rate de-

composition for a = 0.9 from integrations over four optimization periods. Because in the

supercritical case a = 1.1 at the horizontal wavelength of the leading SV also an unsta-

ble normal mode exists (cf. AS) one sees the energy to eventually diverge exponentially,

indicating that the structure of the SV has approached that of the normal mode. Figure

5 gives a comparison between the altitude dependent contributions to the total growth

rate at t = 0 and t = τ for leading parallel optimal perturbation and normal mode (at

the same horizontal wavelength) at a = 1.1, i.e. e.g. γ‖ = r‖/ 〈2ekl〉 for the flux of parallel

momentum so that Γ‖ =
〈
γ‖

〉
and likewise for all other terms (angle brackets indicate a

vertical average multiplied by Lz/Λz). Two aspects are notable there. First, the normal

mode does not exhibit any time dependence in its growth-rate decomposition. This is

due to its time-independent structure which in turn precludes a dynamic development as

seen in the SV which can thereby extract energy from the basic wave in a much more

efficient manner. Secondly, in the later stages the exchange processes do not differ any

more between singular vector and normal mode, so that obviously the singular vector

then has developed into the structure of the normal mode. Detailed comparisons between

the SV and NM structure in the various dynamic fields further bear this out (not shown).

Details of the SV exchange processes for the subcritical case a = 0.9 are shown in the

lower panel of figure 4. At least in part these are in interesting correspondence to those

seen in the constant-shear-layer approximation (Fig. 1). Buoyant energy exchange seems

to trigger the energy growth. This is followed by a strong contribution Γ⊥, indicating
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that also here the roll mechanism is the most important process at work by which energy

is transferred from the shear in the transverse wind component in the IGW (V0) to the

perturbation. In contrast to the predictions from the shear-layer approximation, however,

there is no damped oscillation in the energy. This oscillation, a result of the repeated

destructive and constructive interference between two damped normal modes, seems to

be obstructed by the probably more complex modal decomposition of the SV in the more

general approximation. One growth cycle is followed by decay which to about equal parts

results from along-gradient momentum flux (Γ⊥) and viscous-diffusive damping (Γd).

For an impression of the impact of the ratio M/K in the IGW we show for a = 0.9

and the vertical wavelengths Λz = 3 km and 9 km, but always Λx = 500 km, the time

dependent growth-rate decomposition from integrations of the leading parallel SV in the

left column of figure 6. In the shear-layer picture larger M/K means larger β and thus a

more important contribution from the shear-related exchange term Γ⊥ in comparison to

Γb. Likewise one would expect an increase of the total growth factor and thus also the

instantaneous growth rate. Both expectations are verified here while also in these cases

no damped energy oscillation is observed.

The space-time dependence of the leading parallel SV for (a, Λz) = (0.9, 6km) is shown

in figure 7 where on can see the time development (between t = 0 and t = 2τ) of the real

parts of all four model variables. At all stages the structure is extremely confined to the

statically least stable altitude region, which might be an explanation why for this case the

constant-shear-layer approximation works so reasonably. Notable is also the dominance

of growth in v⊥ (note the different contour intervals), resulting from the exchange via

the roll mechanism, while the buoyancy perturbation is initially losing energy. The rapid
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time-oscillation is due to the advection of the small-scale structure (λ‖ ≈ 660 m) in

the parallel wind in the IGW which reaches a minimum U0 ≈ −11 m/s at z = 0, also

in agreement with the shear-layer picture (i.e. all variables are ∝ exp
(
ik‖U‖t

)
). The

corresponding time development of the growth-rate contributions can be seen in figure 8,

showing the strong exchange γ⊥ due to the roll mechanism. It is interesting to see that

the energy in b decays while γb is positive initially. This is a result of a buoyant exchange

εbw = ebw/ 〈ekl〉 between the perturbation energy in b and w, while the latter then leads

via γ⊥ to the growth in v⊥, showing how in this chain both reduced static stability (via

γb) and the transverse wind shear (via γ⊥) together lead to the strong overall growth of

the perturbation in v⊥. Note that rb = (1−N2
tot/N

2) ebw, implying that near the initially

statically least stable altitude z = 0 buoyancy must necessarily decay via ebw for a < 1 if

rb > 0. In fact figure 7 clearly shows that the energy in w increases if that in b decreases

and vice versa.

4.1.2 Transverse SV

Now turning to the leading transverse SV we see in the right column of figure 4 energy

for a = 0.9 and 1.1, and the growth-rate decomposition for a = 0.9, also from inte-

grations over four optimization times. In contrast to the parallel case at the respective

horizontal wavelength no unstable normal mode exists so that, as in the constant-shear-

layer approximation, energy eventually decays. Details of the SV exchange processes for

the subcritical case a = 0.9 are shown in the lower panel of figure 4. At least in part

these are again in interesting correspondence to those seen in the constant-shear-layer

approximation. Buoyant energy exchange seems to trigger the energy growth, followed by

another contribution from Γ‖, indicating the Orr mechanism to be at work, in which the
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counter-gradient flux of u‖ = v interacts with the corresponding shear dU‖/dz = dV0/dz

in the IGW. In contrast to the shear-layer approximation, however, there also is a final

important contribution from Γ⊥, so that also here the roll mechanism seems to be active.

The impact of the ratio M/K in the IGW (right column in figure 6) is again in reasonable

correspondence to the predictions from the constant-shear-layer approximation. Larger

M/K, and hence larger β lead to a more important contribution from Γ‖ in compari-

son to Γb, and also stronger overall growth. In all examined cases, however, we also see

a significant contribution from the roll mechanism, as not predicted in the shear-layer

picture.

The space-time dependence of the SV together with its energetics are shown in figures

9 and 10. Since U‖ = V0 vanishes near z = 0 no corresponding high-frequent advection is

visible as in the case of the parallel SV. A strong contribution from γ‖ at z = 0 shows the

Orr mechanism to work near the strongest gradient of U‖ = V0. Similarly to the case of

the parallel SV one finds, however, also a large initial γb while b decays, indicating that ebw

is immediately transferring buoyant energy into kinetic energy in w, thereby enforcing the

roll mechanism which via γ⊥ leads to a considerable increase in the energy in v⊥. Note that

the latter process here works at some distance from z = 0 where it would be forbidden due

to ∂V⊥/∂z = −∂U0/∂z = 0. The remaining behavior looks more complex, with apparent

vertical radiation from the statically least stable altitude, ending in small-scale structures

near z = ±Λz/2 and z = 0. We also note that the vertical scales of the developing

structures are progressively decreasing, leading to strong viscous-diffusive decay in the

late stages of the development, and that they are considerably shorter than the ones set

by the IGW packet. While the behavior near z = 0 is consistent with the picture of an
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Orr mechanism leading to diverging vertical wave number in the source region, one might

speculate that the development near z = ±Λz/2 is relate to the approach of a small-scale

wave towards a critical layer, as first described via WKB theory by Bretherton (1966).

This is a hypothesis we want to test here in a quantitative manner.

We observe that in comparison to the perturbation the spatial and time dependence

of the basic wave is weak. In the case of a constant background one would obtain from

the model equations (see AS) plane gravity waves with no component in v⊥. We therefore

introduce a scaling parameter ε and use the modified WKB ansatz

(
U‖, V⊥, N2

tot

)
(z, t) =

(
Ũ‖, Ṽ⊥, Ñ2

tot

)
(εz, εt) (31)

(
u‖, v⊥, w, b, p

)
(z, t) =

(
ũ‖, εṽ⊥, w̃, b̃, p̃

)
(εz, εt) eiη(εz,εt)/ε . (32)

We define

ω = −1

ε

∂η

∂t
(33)

m =
1

ε

∂η

∂z
, (34)

while the model equations (neglecting the Coriolis effect) yield to lowest order in ε

u‖ = −i
ω̂

N2
tot

m

k‖
b (35)

v⊥ =
b

N2
tot

∂V⊥
∂z

(36)

w = i
ω̂

N2
tot

b (37)

ω̂ = ω − k‖U‖ = δ

√√√√ N2
totk

2
‖

k2
‖ + m2

, δ = ±1 . (38)

(33) – (34) can be combined with (38) to give a predictive equation for the local vertical

wavenumber

∂m

∂t
= −cgz

∂m

∂z
− ∂Ω

∂z
(39)
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with the vertical group velocity cgz = ∂Ω/∂m = −ω̂m/
(
k2
‖ + m2

)
and the frequency func-

tion Ω
(
k‖,m, z, t

)
= k‖U‖ + ω̂

(
k‖, z, t

)
. Once buoyancy b and the vertical wavenumber

m have been diagnosed from the linear model one can examine whether u‖, v⊥, and w

are for any δ consistent with the WKB theory via (35) – (37). Having verified this, it is

then possible to go to (39) and identify the process responsible for the apparent increase

of the vertical wavenumber in the layer formation. This is what we have done. The

vertical wavenumber has been determined from the buoyancy fields by first determining

exp (iη/ε) = b/ |b| and hence m = = [exp (−iη/ε) ∂/∂z exp (iη/ε)].

For illustration we show some results for z > 0, while in the other altitude range our

results support at the same accuracy the conclusions we come to here. For t = 3τ figure

11 shows the real and imaginary parts of the two horizontal wind components, as well

as the prediction of these quantities from the basic-wave fields, b, and m, for both cases

δ = ±1. The time dependent vertical wavenumber and intrinsic frequency are shown in

figure 12. One sees that m < 0 near z = 0 and m > 0 else. The agreement between the

horizontal wind in the perturbation and the prediction from WKB theory is very good

for δ = −1 near z = Λz/2 and reasonable for δ = 1 near z = 0. This indicates that the

data can be interpreted by the WKB model as resulting from small-scale gravity waves

radiating away from the statically least stable location.

Returning now to the critical-layer hypothesis we first note that local frequency ω (z, t) =

Ω [m (z, t) , z, t] satisfies

∂ω

∂t
= −cgz

∂ω

∂z
+

∂Ω

∂t
, (40)

i.e. for a time-independent background frequency would be conserved along rays defined

by the local group velocity. Under such circumstances a critical layer arises as in the course
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of propagation along a ray k‖U‖ → ω, and hence ω̂ → 0 and |m| → ∞. In (39) this should

express itself in a dominance of ∂Ω/∂z ≈ k‖∂U‖/∂z on the right-hand side. Here we have

a time-dependent background so that this picture can only be satisfied approximately.

Still, however, we find the layer near z = Λz/2 to be characterized by an increase of

vertical wavenumber and corresponding decrease of intrinsic frequency ω̂, as visible in

figure 12. In passing we also note the sign change in m near z = 0 from t < τ to t > τ , as

predicted from the shear-layer theory. In figure 13 we have finally plotted for the altitude

z = 0.45Λz the diagnosed tendency of vertical wavenumber (estimated from central 10-sec

differences), the prediction of this by WKB theory, and the contribution to the latter by

the vertical shear in the transverse wind of the basic IGW. Indeed WKB theory seems to

give a useful approximation of the complete wavenumber dynamics during the formation

of the small-scale layer. It slightly overestimates the wavenumber increase but the basic

effect is reproduced, where it is mostly the vertical shear in U‖ = V0 which causes the

scale collapse observed at the shear layer. In summary, although the time-dependence of

the background precludes a robust critical layer (see also Broutman and Young, 1986), we

see a strongly related effect due to the propagation of the excited perturbation towards

the zero lines z = ±Λz/2 of transverse wind in the basic IGW packet.

4.2 Long optimization times

In our analysis of SV for longer optimization times we have focussed again on the sub-

critical case (a, Λz) = (0.9, 6km). For all calculations we used a model resolution of 1024

grid points/5Λz, where the model domain size was always chosen large enough so that

potentially radiating structures (see below) never reached the model boundaries. Exam-
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ined optimization times are τ = 1h, 2h, 5h, and 10h. The last value approaches the IGW

period T ≈ 11h. The time dependence of the wave packet makes the results from the

constant-shear-layer approximation the less applicable the larger τ/T is. The nicer it is

to see how much it can still be used for qualitative explanations of SV behavior in these

cases.

Figure 14 shows the wavelength dependent growth-factor curves. In agreement with

the expectations from the constant-shear-layer theory (see AS) the singular vectors are to

be found at progressively increasing wavelengths as τ is increased. At large τ , however,

for all azimuth angles an important growth-factor peak at rather short scales (of the order

Λz) appears with values as large as nearly 50 at α = 30◦ for τ = 10 h. Another prediction

we find verified is that the largest growth factor at α = 0◦ is approximately independent

of τ , i.e. σ2
1 ≈ (4/Ri) (N2/N2

tot) ≈ 238 as determined from the conditions at the statically

least stable altitude. Also as expected, at least for intermediate τ transverse optimal

growth gets larger than its parallel counterpart. Most important at large τ are, however,

oblique azimuth angles, which dominate at nearly all scales. For these cases neither the

statically enhanced roll or Orr mechanisms act alone but always a combination of the two.

For τ = 2 h we show in figure 15 the time dependent growth-rate decomposition for the

optimally growing structure at each of the four examined azimuth angles. The behavior

of the parallel optimal perturbation is still very similar to the one at short optimization

times, albeit on a longer time scale. Again we see the statically enhanced roll mechanism

at work, with an initial trigger by buoyancy related energy exchange with the IGW. Γ‖

rises at larger α in importance over Γ⊥, while the initial contribution from Γb is always

there, giving an indication of a statically enhanced Orr mechanism. Again we do not see
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the damped energy oscillation from the constant-shear-layer picture at α = 0◦. At α > 0◦

damped oscillatory behavior is visible, but from the next two figures one can see that the

process behind this is not the same as in the shear-layer approximation.

In figure 16 one can see for all azimuth angles the development of the real part of

the vertical wind in the perturbation, while figure 17 shows for α = 60◦ the space-

time dependence of the four growth-rate contributions. One sees that for all α < 90◦

the singular vectors radiate small-scale gravity waves into the far field where the IGW

does not influence the propagation conditions any more. In figure 17 one can recognize

that the damped oscillatory behavior of the growth-rate contributions results from the

movement of the radiated waves through the IGW. In the course of this propagation it

gets successively into contact with differing shear and stratification conditions. As static

energy exchange Γb is only important initially it is concentrated in the packet center, but

the shear-related exchange terms γ‖ and γ⊥ are correlated with the respective gradients

∂U‖/∂z and ∂V⊥/∂z. The corresponding oscillation in the energy exchange (Fig. 15) gets

weaker as the radiated waves move away from the center of the IGW packet into regions

where the IGW gradients are negligible.

It is interesting to note that the fact that we here find wave radiation by the SV,

while this is not to be seen for the shorter optimization time τ = 10 min (see figures 7

and 9), can be understood in terms of simple linear gravity-wave dynamics. As shown

above, but also visible in figure 16, all but the transverse singular vectors show a rapid

time oscillation in all fields with a period determined by advection of their small-scale

structure in the wind U‖ in the IGW near the statically least stable location, i.e. their

frequency is ω ≈ k‖U‖. In the external region (where the IGW fields are essentially zero)
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gravity waves at such a frequency can only propagate if |ω| < N so that non-evanescent

wavenumbers are limited to k‖ < N/
∣∣∣U‖

∣∣∣. Since the scales of SV at short optimization

times are too small for this (e.g. λ‖ ≈ 660 m for α = 0◦ and τ = 10 min, see AS) they

cannot radiate, while the opposite holds for longer τ . The same rationale can also explain

the vertical scales of the radiated structures themselves. From the far-field gravity-wave

dispersion relation ω = ±Nk‖/
√

k2
‖ + m2 follows for α < 90◦ (neglecting the Coriolis

effect)

m =

√
N2

u2
0 cos2 α

− k2
‖ , (41)

since near the statically least stable location U‖ = u0 cos α. From this relation we find for

the radiated structures in figure 17 the predicted vertical scales 2π/m ≈ 2.7Λz, 1.1Λz, 0.61Λz

for α = 0◦, 30◦, 60◦, where the optimal wavelengths are 7.9 km, 16 km, and 16 km, re-

spectively (see Fig. 14) . These are in quite good agreement with the numerical results

shown here. As a consequence one can expect as far-field behavior of slightly subcritical

IGW the radiation of high-frequent gravity waves with increasingly shorter periods and

longer vertical wavelengths as the azimuth angle decreases. From the same reasoning one

can also expect transverse radiation to be basically obstructed, since the resulting waves

will always be evanescent.

It is noteworthy that even for τ = 10 h the growth factor is near 50. The time the

corresponding perturbations take for their amplification is quite large so that their ap-

pearance might be prevented by nonlinear modifications of the IGW under the influence of

other perturbations rising in amplitude more quickly. The oblique propagation directions

of these SV, however, suggest that they are relate to the diagonal shear modes found by

Lelong and Dunkerton (1998a) in their simulations of a case with a = 0.95 and a ratio
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between inertial frequency and IGW frequency R = 0.7, which is rather near to our com-

bination (R, a) = (0.65, 0.9). A one-two-one comparison is difficult since in that study an

artificially increased ratio f/N = 0.1 was used, but it is striking that there an asymmetry

in perturbation growth about α = 90◦ was found, so that if our findings were relate to

that work, we should also see a corresponding asymmetry in the growth factors. Indeed

this is the case. So we find that SV growth over τ = 10 h is not larger than by a factor

9 if determined for the azimuth angles α = 120◦ and 150◦ (not shown here). Moreover,

those authors also found a vacillation of energy growth about a mean value. This seems

to be relate to the damped vacillation we find, as e.g. in figure 15 but also visible for

other τ than 2 h, which is due to the movement of the perturbation through the periodic

IGW fields.

5 SV in the general IGW packet

Dropping all simplifications we finally get to the most general SV in the IGW packet with

complete time and space dependence. As discussed above these are of the form (v′, b′, p′) =

(v, b, p) (x, z) exp (ily) with an arbitrary wavenumber l = 2π/λy in y-direction. One would

expect that in a survey of the SV dependence on λy the parallel SV from above leave their

traces among the general SV for λy = ∞, whereas oblique and transverse SV are to be

found among λy < ∞. For illustration we here discuss the two cases τ = 10min and 1h

for a = 0.9 each2. For the wavelength range between λy = 1km and 6 km the growth

2Expecting the resulting features to be located near the location of least static stability the IGW

packet, from a nonlinear integration in a periodic box with dimensions (Lx, Lz) = (Λx, 5Λz) =

(500km, 30km), was stored for greater numerical efficiency for the analyzes of λy < ∞ in the inner

sub-domains with (Lx, Lz) = (Λx/2, 3Λz) and tapered to zero with a cosine profile in the outer regions
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factors we found for the leading SV are shown in figure 18. One sees for τ = 10min a local

optimum with growth by σ1 = 6.8 at λy = 3.9km. This seems to be relate to optimal

transverse growth, i.e. at α = 90◦, in the 1-D profile by σ1 = 7.0 at λ‖ = 3.8 km (see AS).

For the same τ the general SV at l = 0 grows by σ1 = 8.9, just as the leading parallel

SV, i.e. for α = 0◦, we found for the 1-D profile in AS. The wavelength λ‖ = 660 m of

that pattern also is in good agreement with the scales of the general SV (see below). For

τ = 1 h we find an optimum at (λy, σ1) = (5.5km, 26.3) which seems to correspond to

optimal transverse growth in the 1-D approximation at
(
λ‖, σ1

)
= (5.0km, 24.1). At l = 0

we find optimal growth by σ1 = 14.7, seemingly corresponding to the leading parallel SV

in the 1-D approximation at
(
λ‖, σ1

)
= (7.1km, 13.7). Also here the scales of the general

SV and the one from the 1-D approximation are in good agreement (not shown).

Also the energetics of the identified patterns indicates their relation to the SV from the

1-D approximation. In general one can derive for the energy density el = 1/2
(
|v|2 + |b|2 /N2

)

∂el

∂t
+∇y ·

[
V0el + < (vp)− ν∇y

|v|2
2
− µ∇y

|b|2
2N2

]
= ru + rv + rw + rb −Dv −Db (42)

with

ru = −< (uv) · ∇yU0 (43)

rv = −< (vv) · ∇yV0 (44)

rw = −< (wv) · ∇yW0 (45)

therefrom with horizontal extent Λx/8 and vertical extent Λz. For τ = 10min and l = 0 the stored

inner sub-domain is of extent (Lx, Lz) = (Λx/2,Λz) with tapering over the horizontal extent Λx/8 and

over the vertical extent Λz/8, while for τ = 1h and l = 0 the stored inner sub-domain is of extent

(Lx, Lz) = (Λx/2, 5Λz) with tapering over the horizontal extent Λx/8. In each case the chosen resolution

was made sure to well resolve all essential resulting features. In several experiments it was also made

sure that the limitation to the central least stable region was of no effect on the results
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rb = −< (bv) · 1

N2
∇yB0 (46)

Dv = ν

[
l2 |v|2 +

3∑

i=1

|∇yvi|2
]

(47)

Db =
µ

N2

[
l2 |b|2 + |∇yb|2

]
, (48)

where ∇y = (∂/∂x, 0, ∂/∂z). Energy exchange between w and b is given by the same

term ebw as in (28). As before we calculate from the exchange terms corresponding

instantaneous growth rate contributions Γu etc. For τ = 10 min and a = 0.9 we show

the time-dependence of these and total energy in the identified SV in figure 19. The

latter is split into kinetic energy Ekin =
∫

dxdz |v|2 /2 and available potential energy

Epot =
∫

dxdz |b|2 /2N2. The negligible contribution from Γw is not shown. Comparison

with figure 4 further stresses the similarity between the general SV and the ones from

the analysis of the 1-D profile, where for the case λy = ∞ or α = 0◦ one obviously

has to compare Γu with Γ‖ and Γv with Γ⊥, while in the case λy = 3.8 km or α = 90◦

the corresponding pairs are Γu and Γ⊥, and Γv and Γ‖. It thus is also no surprise that

closer inspection also shows that in the general case the gradients in x-direction do not

contribute to the energy budget in any significant way (not shown). Similar conclusions

also hold for the case τ = 1 h (also not shown).

Of largest remaining interest therefore is the horizontal distribution of the general SV,

since the horizontal limitation of the statically weakly stable location should be expected

to have some impact. Indeed we find this to be the case. Figure 20 shows for τ = 10 min

the leading SV at l = 0 and at t = τ in the region where it has significant amplitude.

One observes that it is a wave packet both vertically and horizontally closely confined

near the location of least static stability. In the course of the time integration we observe

its rapid leftwards advection to smaller x by the U0-wind in the IGW (not shown). Note
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that near a = 1 this advection is approximately at the horizontal phase velocity of the

IGW so that the SV follows the movement of the statically least stable location, thereby

enabling longer transient growth. Also here the overwhelming contribution to this growth

is from the amplification of v. For τ = 10 min and λy = 3.8 km we show in figure 21 the

time development of buoyancy in the leading SV between t = 0 and t = 3τ . Once again

one finds it to be confined to the location of least static stability, but of larger extent

than the patterns at l = 0. This is consistent with the expectation, from the 1-D picture,

of a structure with comparatively weaker dependence on x than on y. Clearly visible is

also the critical-layer behavior near the zero lines of V0. Our observations for τ = 1h are

quite analogous (not shown). Also these patterns are closely confined to the region of

least static stability. The structure at l = 0 is advected by U0 towards smaller x, thereby

following the least stable location. As was to be expected from the previously said we

also find it to radiate small-scale gravity waves into the exterior range not affected by

the IGW where they can propagate freely. Also as expected, the more strongly growing

structure at λy = 5.5 km cannot radiate but exhibits similar critical-layer behavior near

the zero-lines of V0 as visible in figure 21.

6 Summary and discussion

In our pair of studies (the present and AS) of optimal perturbations to IGW packets in

the mesosphere we have worked ourselves upwards through a hierarchy of three models

with increasing complexity, each of them providing instructive pieces of information to the

whole picture we have by now. It is pleasing to recognize that many features can already

be understood on the basis of a stratified constant-shear-layer approximation where only
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the local stratification and transverse-wind gradient ∂V0/∂z near the statically least stable

location of the IGW packet enter. Based on previous relate work by Farrell and Ioannou

(1993a,b) and Bakas et al. (2001) it is found that the two cases of perturbations most

accessible to closed analytic treatment, i.e. propagating in the horizontal parallel (i.e.

at azimuth angle α = 0◦) or transverse (α = 90◦) with respect to the IGW, can be

understood in terms of a roll or Orr mechanism, respectively, both controlled by the

shear, however significantly amplified by the locally reduced static stability. The latter

serves as a catalyst for buoyant energy exchange between IGW and vertical wind in the

perturbation, thus further enforcing the shear-related exchange processes.

The SV energetics in an approximation of the IGW by its time dependent vertical

profile at the horizontal location x = Λx/2 with initially least static stability basically re-

produces these findings. It further highlights a basic distinction between NM and SV that

the former are structurally fixed while the latter can adjust their fields instantaneously

so that over a finite time a more efficient energy exchange with the IGW is possible than

in the NM case, thus giving a further explanation of the more rapid transient growth of

SV than admitted for NM. The 1-D approximation of the IGW fields also shows the close

initial confinement of the optimal perturbation to the altitude of least static stability.

For short optimization times the leading parallel SV, having an intrinsic short time scale

set by the advection of its small-scale fields by the parallel horizontal wind in the IGW,

stays there as it is prevented from outwards radiation by a linear wave duct. Similar ob-

servations hold for oblique SV which at fixed optimization time have progressively larger

intrinsic time scales as the azimuth angle increases. The leading transverse SV is char-

acterized by intermediate radiation away from its origin, with further energy growth via
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a roll mechanism where an IGW shear in the parallel horizontal wind component exists,

until its further vertical propagation is blocked by a critical-layer interaction at the zero

line of the transverse wind in the IGW.

Similar behavior is also found in the most general treatment of the problem where also

the horizontal spatial dependence of the IGW is taken into account. The SV from the

1-D approximation are basically reproduced, then however with a horizontal modulation

of their amplitude so that they tend to be confined to the statically least stable horizontal

location. From this one can expect a certain patchiness in the turbulence onset in an

IGW packet propagating upwards through the mesosphere, as would be consistent with

turbulence measurements from rocket soundings (Müllemann et al., 2003). It also is not

in disagreement with relate simulations of IGW breakdown by Lelong and Dunkerton

(1998a,b) who show turbulence onset to be confined to the phase of static least stability

in their monochromatic wave.

While the energy growth of parallel SV is favored for short optimization times, it is also

limited from above by (4/Ri) (N2/N2
tot), so that for larger optimization times oblique and

transverse SV prevail. The time scale of the long-term transient growth behavior of all SV,

ending in algebraic or viscous-diffusive decay when no growing normal mode exists, but

exhibiting asymptotic convergence towards the leading unstable NM if there is any, is to

the most part set by τ , so that for a wide range of optimization times considerable optimal

growth is allowed. As the optimization time is increased both the dominant spatial and

intrinsic time scales of the identified perturbations get larger, and for optimization times

approaching the IGW period transient growth by an amplitude factor as large as 50 is

still observed. The oblique SV found there might be relate to the diagonal shear modes
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diagnosed by Lelong and Dunkerton (1998a) in their simulations of the breakdown of a

statically stable IGW.

Another interesting result is the observation that SV for longer optimization times

tend to radiate gravity waves into the exterior field where the IGW has no direct impact

any more. This offers an alternative mechanism for a mesospheric gravity wave source to

the excitation of gravity waves by ageostrophic body forcing resulting from gravity-wave

breakdown (Vadas and Fritts, 2001; Zhou et al., 2002) or by normal-mode instabilities of

statically unstable IGW (Kwasniok and Schmitz, 2003). Specific features of the radiation

mechanism identified by us are that it does not require the basic IGW to be unstable in

the normal-mode sense and that the vertical wavelength and the frequency of the radiated

waves get larger the more parallel the propagation direction of the radiated waves is with

respect to the IGW.

Still we think that it is two early to decide how relevant SV are on the whole for the

problem of turbulence onset in breaking IGW. In the end one might find that the answer

is case-dependent, so that for the propagation of an IGW packet into a medium already

left rather turbulent from a previous breaking event short-term growth of SV might be

more important for describing the turbulence amplification in the IGW, whereas the

IGW breaking in a rather quiescent medium, allowing the perturbations a free linear

development over an IGW period or longer, might be more similar to predictions from

normal-mode theory. For this further analyzes and simulations of IGW breaking initialized

from growing NM or SV seem necessary which are, however, beyond the scope of this

paper.
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Figure 1: For the shear-layer approximation of optimal growth of parallel perturbations

(α = 0, vertical wavelength λz = 600 m) in an IGW packet (Λz = 6 km) with two different

amplitudes a the time-dependent growth-rate decomposition from an integration of the

leading optimal perturbation (i.e. at optimal horizontal wavenumber) for optimization

times τ = 10 min and 1 h. The contributing terms are the instantaneous growth rates

due to vertical counter-gradient fluxes of momentum in y⊥-direction and buoyancy b, and

viscous and diffusive damping. For the case (a, τ) = (0.9, 1h) we show twice the growth

rates.
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Figure 2: As Fig. 1, but now for the leading transverse perturbations (α = 90◦). Instead

of the counter-gradient flux of momentum in y⊥-direction one here has a contribution

from the flux of momentum in x‖-direction.
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Figure 3: For the same four combinations of a and τ and the same λz and Λz as in figure

1 the time-dependent energy in the integration of the leading optimal perturbations for

the azimuth angles α = 0◦, 30◦, 60◦, and 90◦.
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Figure 4: For the leading (i.e. at optimal horizontal wavelength) parallel SV (left column)

and transverse SV (right column) in the approximation of the IGW with Λz = 6 km by

a 1-D profile, time-dependent total energy for a = 0.9 and a = 1.1 (top row) and for

a = 0.9 the instantaneous growth rate and its decomposition (bottom), from integrations

over four optimization periods τ = 10 min.
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Figure 5: For the 1-D-profile approximation of an IGW with (a, Λz) = (1.1, 6km), the

altitude-dependent growth-rate decomposition at t = 0 (left column) and t = τ (right) for

the leading SV (i.e. at the optimal horizontal wavelength) for optimization time τ = 10

min (top row), and the leading normal mode at the same horizontal wavelength (bottom).
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Figure 6: As the bottom row in Fig. 4, but now for Λz = 3 km (top row here) and Λz = 9

km (bottom).
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Figure 7: For the leading (i.e. at optimal horizontal wavelength) parallel SV in the

approximation of the IGW with Λz = 6 km and a = 0.9 by a 1-D profile, the time-

dependent real parts of all four model variables from integrations over two optimization

periods τ = 10 min. Contour intervals are in arbitrary units, but five times larger for v⊥

than for the other variables. The zero contour is not shown. Negative values are indicated

by dashed contours.
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Figure 8: For the same integration as shown in Fig. 7 the corresponding altitude-

dependent growth-rate contributions. The contour interval is 2·10−4s−1. The zero contour

is not shown. Negative values are indicated by dashed contours. In the lower right panel

the viscous-diffusive damping is recognizable from its negative values throughout.
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Figure 9: As Fig. 7, but now from an integration of the leading transverse SV over ten

optimization periods τ = 10 min. Here all variables are shown with identical contours.
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Figure 10: For the same integration as shown in Fig. 9 the corresponding altitude-

dependent growth-rate contributions. The contour interval is 2·10−4s−1. The zero contour

is not shown. Negative values are indicated by dashed contours.
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Figure 11: From the same integration as shown in Fig. 9 the real parts (top row) and

imaginary parts (bottom) for v⊥ (left column) and u‖ (right) at t = 3τ = 30 min, as well

as the prediction of these fields from WKB theory using the two branches δ = ±1.

45



Figure 12: From the same integration as shown in Fig. 9 the vertical wavenumber (left

panel) and the absolute value of the intrinsic frequency according to WKB theory (right)

at four characteristic times.
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Figure 13: From the same integration as shown in Fig. 9 the tendency of vertical wavenum-

ber at z = 0.45Λz, its prediction by WKB theory (long-dashed), and the part of the latter

due to the transverse-wind gradient in the IGW ∂U‖/∂z = ∂V0/∂z (short-dashed).
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Figure 14: For the approximation of an IGW with (a, Λz) = (0.9, 6km) by a one-

dimensional profile, the wavelength dependence of the growth factors of the strongest

growing optimal perturbations at azimuth angle α = 0◦, 30◦, 60◦, and 90◦ for four differ-

ent long optimization times τ .
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Figure 15: From an integration of the leading SVs (i.e. at most rapidly growing parallel

wavelength), at azimuth angle α = 0◦, 30◦, 60◦, and 90◦ and optimization time τ = 2 h,

in an approximation of an IGW with (a, Λz) = (0.9, 6km) by a one-dimensional profile,

the instantaneous growth rate and its decomposition.
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Figure 16: From the same integrations as shown in Fig. 15, the space-time dependent real

part of the vertical wind in the perturbation. Contour intervals are in nondimensional

units. Negative values are indicated by dashed contours. The zero contour is not shown.
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Figure 17: From the integration for α = 60◦ shown in Figs. 15 and 16, the space-time

dependent IGW fields (shaded with shading interval 2 m/s), and the respective contri-

butions to the instantaneous growth rate, as well as that of viscous-diffusive damping.

For the growth-rate contributions the contour interval is 2 · 10−4s−1. Negative values are

indicated by dashed contours. The zero contour is not shown.
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Figure 18: For the general IGW packet at (a, Λz) = (0.9, 6km) with complete time and

space dependence, the growth factors of the leading SV for optimization times τ = 10

min and 1 h, in their dependence of the wavelength λy in y-direction.
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Figure 19: From integrations of the leading SV, for τ = 10 min and at λy = ∞ (left

column) or 3.8 km (right), of the general IGW packet at (a, Λz) = (0.9, 6km) with complete

time and space dependence, the time dependence of kinetic, potential, and total energy

(top row), and the corresponding instantaneous growth-rate decomposition (bottom).
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Figure 20: For the leading SV at τ = 10 min and λy = ∞, of the general IGW packet at

(a, Λz) = (0.9, 6km) with complete time and space dependence, the four dynamic fields

at t = τ (identical isolines in arbitrary units for u,w and b/N , but five times contour

interval for v, zero contour not drawn), together with the transverse-wind field V0 of

the IGW packet (shaded with interval 2 m/s, for better orientation the zero contour is

indicated by a solid line), in the central region where the SV has significant amplitude.
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Figure 21: For the leading SV at τ = 10 min and λy = 3.8 km, of the general IGW

packet at (a, Λz) = (0.9, 6km) with complete time and space dependence, the buoyancy

field at four characteristic time instances (identical isolines in arbitrary units, zero contour

not drawn), together with the transverse-wind field V0 of the IGW packet (shaded with

interval 2 m/s, for better orientation the zero contour is indicated by a solid line), in the

central region where the SV has significant amplitude.
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