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ABSTRACT

The three-dimensionalization of turbulence in the breaking of nearly vertically propagat-

ing inertia-gravity waves is investigated numerically using singular vector analysis applied

to the Boussinesq equations linearized about three two-dimensional time-dependent basic

states obtained from nonlinear simulations of breaking waves: a statically unstable wave

perturbed by its leading transverse normal mode, the same wave perturbed by its leading

parallel normal mode, and a statically stable wave perturbed by a leading transverse singular

vector. The secondary instabilities grow through interaction with the buoyancy gradient and

velocity shear in the basic state. Which growth mechanism predominates depends on the

time dependent structure of the basic state and the wavelength of the secondary perturba-

tion. The singular vectors are compared to integrations of the linear model using random

initial conditions, and the leading few singular vectors are found to be representative of the

structures that emerge in the randomly initialized integrations. A main result is that the

length scales of the leading secondary instabilities are an order of magnitude smaller than

the wavelength of the initial wave, suggesting that the essential dynamics of the breaking

might be captured by tractable nonlinear three-dimensional simulations in a relatively small

triply periodic domain.

1. Introduction

The importance of gravity waves to the large scale circulation in the middle atmosphere

is well established. The mean state of the atmosphere as well as phenomena such as the cold

summer pole in the mesopause (Houghton 1978) and the quasi-biennial oscillation (QBO) in

equatorial winds in the stratosphere (Lindzen and Holton 1968) cannot be properly explained

without accounting for the effects of gravity waves.

The range of scales inherent in the sources of gravity waves in the middle atmosphere,

especially flow over topography and convection but also spontaneous emission from the
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adjustment of balanced flows, is reflected in the range of temporal and spatial scales involved,

from minutes to several hours and tens of metres to thousands of kilometres (see Fritts et al.

2006, for a review of the characteristics of gravity wave sources). Due to the range of scales

involved, both the sources of gravity waves and the momentum deposition associated with

their breaking, known as gravity-wave drag, must be at least partially parameterized in

general circulation models.

Most parameterization schemes, such as that of Lindzen (1981) and Holton (1982), are

based on the criterion of static instability (also known as convective instability). Gravity

waves from a source with prescribed wavenumber and frequency spectrum are assumed to

propagate vertically against a mean background wind and temperature field. The propaga-

tion of the waves is assumed to follow the predictions of WKBJ theory (Bretherton 1966;

Grimshaw 1975; Müller 1976), wherein the frequency, vertical wavenumber and amplitude

of the waves vary depending on the structure of the background fields. At the point at

which the waves become statically unstable, i.e. where the total potential temperature field

decreases locally with height, some or all of the momentum of the waves is absorbed by the

mean flow and the amplitude of the waves as they continue upward is reduced relative to the

growth predicted by linear theory. See McLandress (1998) and Fritts and Alexander (2003)

for reviews of gravity wave parameterization and surveys of commonly used schemes.

Since there is great uncertainty in all aspects of gravity wave modeling, parameterizations

can be tuned extensively in order to produce a realistic forcing on the circulation. Ultimately,

in order for progress to be made in parameterizing gravity-wave breaking, for example with

a view to simulating future climate scenarios, it is of primary importance to understand the

conditions under which a wave will break as well as the detailed dynamics of the breaking.

Mied (1976) and Drazin (1977) showed using Floquet theory that inviscid monochromatic

gravity waves are linearly unstable at all amplitudes even if their amplitudes are far from the

threshold for static instability and their Richardson numbers greater than 1/4, the sufficient

condition for stability of a steady shear flow (Miles 1961; Howard 1961). Later, Klostermeyer
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(1983) showed how weak viscosity affects the growth rates and spatial scales of the leading

unstable modes, a relevant point since in the mesosphere the kinematic viscosity and thermal

diffusivity are relatively large due to the very low ambient density.

The above studies neglect the effect of rotation, which becomes significant for steeply

propagating waves, so-called inertia-gravity waves (IGW). Due to their very low frequencies

and near horizontal symmetry, steeply propagating waves can be modeled to a large extent

as steady stratified shear flows, whereby Dunkerton (1997) and Achatz and Schmitz (2006)

obtained approximate analytic results. These studies and numerical studies by Yau et al.

(2004), Lelong and Dunkerton (1998a,b), and Achatz (2005) found that rotation strongly af-

fects the orientation of the most unstable perturbations relative to the propagation direction

of the wave. This is because waves affected by rotation have a nonzero velocity component

in the direction perpendicular to the plane of the wave. It has also been shown that shear

instability occurs in IGW below the threshold for static instability.

Most numerical studies of gravity wave breaking have considered only two-dimensional

breaking, but the fact that there are linearly unstable perturbations with all orientations

relative to the propagation direction of the wave indicates that in practice the process must

be strongly three dimensional. Nonlinear numerical simulations by Andreassen et al. (1994)

(see also Fritts et al. 1994) of breaking high-frequency gravity waves found fundamentally

different behaviour in two- and three-dimensional simulations, with more efficient reduc-

tion of the amplitude of the gravity wave and generation of turbulence occurring in the

three-dimensional simulations. More recently, Fritts et al. (2009a,b) used simulations at

much higher resolution and with higher Reynolds numbers more realistic for the atmosphere

and again found differences between the two- and three-dimensional dynamics. Initially,

two-dimensional structures on the scale of the initial wave dominate, while later on, local

instabilities lead to the formation of small scale three-dimensional structures. Another im-

portant point is that waves with amplitudes both above and below the threshold for static

instability break, but the relative sizes of the buoyancy and momentum flux differ depending
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on the static stability of the wave.

There have been to our knowledge no three-dimensional direct numerical simulations

(DNS), comparable to those of Fritts et al. (2009a,b), of breaking IGW (meaning waves

affected by rotation) with parameters realistic for the middle atmosphere and of high enough

resolution to reliably represent the small scales that emerge in the turbulent evolution of the

breaking wave. This is partly because of their very long horizontal scale, a difficulty that

may be overcome by a change of reference frame (as explained below) or by artificially

reducing the ratio N/f (Lelong and Dunkerton 1998a,b), and partly due to the fact that

since the vertical momentum flux associated with a gravity wave decreases with decreasing

intrinsic frequency (Fritts et al. 2006) there has been less interest in IGW breaking than

in the breaking of high frequency waves. That is not to say, however, that the cumulative

effect of IGW on the large scale circulation is negligible. A recent observational case study by

Nicolls et al. (2010) found that a breaking IGW with properties similar to those considered

here accelerated the background flow by 10-20 ms−1.

Three-dimensional simulations are of course computationally expensive, especially given

the scales of low-frequency inertia-gravity waves, and are thus impractical for investigating

much of parameter space. However, since for related problems three-dimensional simula-

tions have indicated essential differences in the two- and three-dimensional aspects of wave

breaking, including different temporal and spatial scales, the following three-stage approach

presents itself. First, the leading primary linear instabilities of the IGW are computed. Next,

high resolution nonlinear two-dimensional simulations initialized with the superposition of

the IGW and its leading linear modes are performed. Finally the linear stability, with re-

spect to perturbations varying in the remaining spatial direction, of the two-dimensional

time dependent states obtained from the nonlinear integrations is considered. The latter is

a two-dimensional problem because the coefficients in the linearized equations depend only

on two spatial dimensions, and is the subject of the present article.

The idea of analyzing the linear stability of numerically calculated two-dimensional non-
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linear solutions to perturbations varying in the perpendicular direction was used by Klaassen

and Peltier (1985a,b) for the problem of Kelvin-Helmholtz instability. Assuming the growth

of the secondary instabilities is much faster than the evolution of the two-dimensional basic

state, they took the two-dimensional state to be time-independent. The resulting linearized

equations could then be analyzed in terms of normal modes. The effect of the temporal evo-

lution of the basic state was considered by performing the linearization at different times.

Here we investigate secondary instabilities using singular vector analysis (Farrell and Ioan-

nou 1996a,b), whereby the perturbations whose energy grows by the largest factor within a

given optimization time are computed. Unlike normal mode analysis, singular vectors may

be computed even for time dependent basic states. In addition, even when the system is

non-normal, singular vectors are the eigenvectors of a real, symmetric matrix and thus form

an orthogonal set, both at the initial time and at the optimization time, making it possible

to project an arbitrary state onto a subset of the leading singular vectors without comput-

ing the whole set. Disadvantages of singular vector analysis are that the singular vectors

have time dependent spatial structure and are thus difficult to compare to, say, observed

structures (although it can identify temporal and spatial scales which one may compare with

observations) and that it cannot distinguish between true linearly unstable, exponentially

growing modes, and the transient growth of a linear combination of oscillatory modes. On

the other hand, with respect to the latter point, if perturbations are finite amplitude, modes

with large transient growth can be the most interesting in practice, leading to nonlinear

effects which dominate the subsequent evolution.

The determination of the primary linear instabilities and the nonlinear two-dimensional

integrations are the subjects of Achatz and Schmitz (2006) and Achatz (2007) respectively.

To describe the orientation of the primary perturbations, we adopt the terminology of

Dunkerton (1997): perturbations varying in the direction perpendicular to the plane of the

wave are called transverse, and perturbations varying in the plane of the wave are called par-

allel. In the present article we focus on two cases identified by Achatz (2007) as particularly
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effective in reducing the amplitude of the initial IGW. In both cases the wave propagates in

the x-z plane with an angle of phase propagation of 89.5◦ to the horizontal and a vertical

wavelength of 6 km. In the first case the IGW is statically unstable, with amplitude 1.2 times

the threshold amplitude for static instability, and the primary perturbation is the leading

transverse normal mode (varying in the y direction). The second case is a statically stable

wave with non-dimensional amplitude 0.86 perturbed by a leading transverse singular vector.

We also investigate the secondary instabilities of the statically unstable IGW perturbed by

its leading parallel normal mode, which is the fast growing of all the normal modes.

The paper is organized as follows: In section 2, the Boussinesq equations in a coordinate

system moving with the wave and rotated so that one axis is parallel to the wavevector of

the IGW, as well as the properties of the IGW solution itself, are reviewed and the hierarchy

of IGW, primary perturbations and secondary perturbations introduced. Section 3 is a

brief outline of singular vector analysis. Section 4 describes the primary instabilities of the

IGW and the basic states taken from Achatz (2007), and Section 5 discusses the secondary

instabilities in terms of singular vectors.

2. Governing equations, the inertia-gravity wave solu-

tion, and primary and secondary perturbations

We use the Boussinesq equations on an f plane,

Du

Dt
− fv +

∂P

∂x
= ν∇2u, (1a)

Dv

Dt
+ fu+

∂P

∂y
= ν∇2v, (1b)

Dw

Dt
− b+

∂P

∂z
= ν∇2w, (1c)

Db

Dt
+N2w = µ∇2b, (1d)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (1e)
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where v = (u, v, w) is the velocity field, buoyancy b is defined in terms of potential tem-

perature θ by b ≡ (θ − θ)/θ0, where θ(z) is the background potential temperature and θ0

a representative constant value, N2 ≡ (g/θ0)dθ/dz is the square of the Brunt-Väisälä fre-

quency, f ≡ 2Ω sinφ0 is the Coriolis parameter at a reference latitude φ0, ν is the kinematic

viscosity, and µ the thermal diffusivity. In all simulations, a value of 1 m2 s−1, typical of the

mesopause region, was used for both ν and µ, N was constant and equal to 2 × 10−2 s−1,

and the f -plane was centred at φ0 = 70N. The material time derivative is defined by

D

Dt
≡ ∂

∂t
+ v · ∇. (2)

In the absence of dissipation (ν = µ = 0)1, a monochromatic inertia-gravity wave is an

exact solution to (1) of the form

[u, v, w, b] = Re
{

[û, v̂, ŵ, b̂] exp [i(kx+mz − ωt)]
}

, (3)

where hatted variables are complex constants, and the constants k and m are the horizontal

and vertical wavenumbers, related to the frequency ω through the dispersion relation

ω2 = N2 cos2 Θ+ f 2 sin2 Θ, (4)

where Θ = tan−1(m/k) is the angle of phase propagation of the wave relative to the hori-

zontal. Since f and N do not depend on horizontal position, there is no preferred horizontal

direction and no loss of generality in considering a wave with wavevector in the x-z plane.

The complex amplitudes satisfy the polarization relations

[û, v̂, ŵ, b̂] = a

[

ω

k
,−i

f

k
,− ω

m
, i
N2

m

]

, (5)

where a is a dimensionless constant defined so that a = 1 corresponds to a wave neutral with

respect to static stability at its least stable point. Notice that because of the Coriolis force,

the horizontal component of the velocity vector rotates with time.

1In the dissipative case, if µ = ν (Prandtl number unity), then (3) is still a solution, but with amplitude

decaying with time.
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As mentioned, the problem of gravity wave stability is greatly simplified by working in a

Cartesian coordinate system rotated about the y axis so that the vertical axis is parallel to

the wave-vector of the wave (Mied 1976). Let the new coordinates be (ξ, y, ζ), where

ξ = sinΘ x− cosΘ z, (6a)

ζ = cosΘ x+ sinΘ z, (6b)

with associated velocity components uξ, v and wζ .

Written in terms of ξ, y, φ and t, where φ = Kζ − ωt is the phase of the wave and

K ≡
√
k2 +m2, the system (1) becomes

Duξ

Dt
− f sinΘ v +

∂p

∂ξ
+ cosΘ b = ν∇2uξ, (7a)

Dv

Dt
+ f(sinΘ uξ + cosΘ wζ) +

∂p

∂y
= ν∇2v, (7b)

Dwζ

Dt
− f cosΘ v +K

∂p

∂φ
− sinΘ b = ν∇2wζ , (7c)

Db

Dt
+N2(− cosΘ uξ + sinΘ wζ) = µ∇2b, (7d)

∂uξ

∂ξ
+

∂v

∂y
+K

∂wζ

∂φ
= 0, (7e)

where now

D

Dt
≡ ∂

∂t
+ uξ

∂

∂ξ
+ v

∂

∂y
+ (Kwζ − ω)

∂

∂φ
, (8)

and the gravity wave solution (3) becomes

uξ = U
(0)
ξ = −

√
K2ω

km
sinφ, (9a)

v = V (0) =
f

k
cosφ, (9b)

wζ = W
(0)
ζ = 0, (9c)

b = B(0) = −N2

m
cosφ. (9d)

Using φ as coordinate in place of ζ places us in the reference frame moving with the phase

velocity of the gravity wave.
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The instability analysis proceeds by linearizing (7) about the solution (9) and looking for

growing perturbations. Because the gravity wave is independent of ξ and y, perturbation

solutions exist of the form

[u
′(p)
ξ , v

′(p), w
′(p)
ζ , b

′(p)] = Re
{

[û
′(p)
ξ (φ, t), v̂

′(p)(φ, t), ŵ
′(p)
ζ (φ, t), b̂

′(p)(φ, t)] exp [i(kξξ + kyy)]
}

,

(10)

which we refer to as primary perturbations. While it may be unstable to three-dimensional

perturbations, if not perturbed a nonlinear integration initialized with an IGW and one

of its leading unstable primary perturbations remains two-dimensional in space, with all

fields depending on only the IGW phase φ and the spatial coordinate in the direction of the

wavevector (kξ, ky) of the primary perturbation. It is therefore convenient to introduce an

additional coordinate transformation

x‖ = cosα ξ + sinα y, (11a)

y⊥ = − sinα ξ + cosα y, (11b)

where α ≡ tan−1(ky/kξ), and the corresponding velocity components u‖ and v⊥. For parallel

primary perturbations u‖ = uξ and v⊥ = v, and for transverse primary perturbations u‖ = v

and v⊥ = −uξ.

We investigate the three-dimensionalization of the turbulence that develops in the break-

ing of an inertia-gravity wave by linearizing (7) about the time-dependent nonlinear devel-

opment of the state initialized with the IGW and a leading primary perturbation, referred

to henceforth as the time-dependent basic state,

[u‖, v⊥, wζ , b] =
[

U‖(x‖, φ, t), V⊥(x‖, φ, t),Wζ(x‖, φ, t), B(x‖, φ, t)
]

, (12)
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yielding

D′u′
‖

Dt
+

∂U‖

∂x‖

u′
‖ +K

∂U‖

∂φ
w′

ζ − f(sinΘ v′⊥ + sinα cosΘ u′
‖) +

∂p′

∂x‖

+ cosα cosΘ b′ = ν∇2u′
‖,

(13a)

D′v′⊥
Dt

+
∂V⊥

∂x‖

u′
‖ +K

∂V⊥

∂φ
w′

ζ + f(sinΘ u′
‖ + cosα cosΘ w′

ζ) +
∂p′

∂y⊥
− sinα cosΘ b′ = ν∇2v′⊥,

(13b)

D′w′
ζ

Dt
+

∂Wζ

∂x‖

u′
‖ +K

∂Wζ

∂φ
w′

ζ − f(sinα cosΘ u′
‖ + cosα cosΘ v′⊥) +K

∂p′

∂φ
− sinΘ b′ = ν∇2w′

ζ ,

(13c)

D′b′

Dt
+N2(− cosα cosΘ u′

‖ + sinα cosΘ v′⊥ + sinΘ w′
ζ) = µ∇2b′,

(13d)

∂u′
‖

∂x‖

+
∂v′⊥
∂y⊥

+K
∂w′

ζ

∂φ
= 0,

(13e)

where

D′

Dt
≡ ∂

∂t
+ U‖

∂

∂x‖

+ V⊥
∂

∂y⊥
+ (KWζ − ω)

∂

∂φ
. (14)

Since the coefficients in (13) are independent of y⊥, we may seek solutions of the form

[u′
‖, v

′
⊥, w

′
ζ , b

′] = Re
{

[û′
‖(x‖, φ, t), v̂

′
⊥(x‖, φ, t), ŵ

′
ζ(x‖, φ, t), b̂

′(x‖, φ, t)] exp(ik⊥y⊥)
}

, (15)

which we call secondary perturbations. The perturbation pressure p′ is found by solving a

Poisson equation obtained by demanding that the perturbation velocity field remain nondi-

vergent.

Note that as much as possible, results will be given in terms of coordinates (ξ, y, ζ) and

dependent variables (uξ, v, wζ , b) in the IGW frame to facilitate comparisons between parallel

and transverse perturbations and between primary and secondary instabilities.
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Energy Budget

The size of perturbations is measured in terms of the change in the perturbation total

energy

E ′ =
1

K

∫∫∫
[

1

2

(

u′2
‖ + v′2⊥ + w′2

ζ +
b′2

N2

)]

dx‖dy⊥dφ, (16)

where the integration is over one wavelength of each of the IGW and the primary and

secondary perturbations. E ′ grows or decays through interaction between the perturbation

and the basic state and decays through dissipation. By analyzing the various momentum

and buoyancy flux terms in the time derivative of E ′,

dE ′

dt
=

1

K

∫∫∫
[

−u′2
‖

∂U‖

∂x‖

−Ku′
‖w

′
ζ

∂U‖

∂φ
− v′⊥u

′
‖

∂V⊥

∂x‖

−Kv′⊥w
′
ζ

∂V⊥

∂φ

− w′
ζu

′
‖

∂Wζ

∂x‖

−Kw′2
ζ

∂Wζ

∂φ
− 1

N2
b′u′

‖

∂B

∂x‖

− K

N2
b′w′

ζ

∂B

∂φ

− ν
(

∣

∣∇u′
‖

∣

∣

2
+ |∇v′⊥|

2
+
∣

∣∇w′
ζ

∣

∣

2
)

− µ

N2
|∇b′|2

]

dx‖dy⊥dφ, (17)

as functions of time, the mechanisms responsible for perturbation growth may be inferred.

Typically, since the gravity wave is statically unstable or near the static stability threshold,

the terms in (17) involving components of the buoyancy gradient are important at early

times. However, at later times, the shear in the basic-state velocity field often plays a role. By

analogy with growth of sinusoidally varying perturbations in the presence of vertical velocity

shear, we call growth due to shear in U‖ (the basic state velocity component transverse

to the direction of sinusoidal variation of the secondary perturbation), a generalized roll

mechanism, and growth due to shear in V⊥ a generalized Orr mechanism. See Achatz and

Schmitz (2006) and Bakas et al. (2001) for discussions of the roll and Orr mechanisms for

perturbation growth in the presence of vertical velocity shear.

Numerical models

All numerical integrations, including the two-dimensional nonlinear simulations for de-

termining the basic states and the linear integrations required for determining the primary
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and secondary perturbations, are performed with the numerical models developed by Achatz

(2005, 2007).

As described in Achatz (2005), primary perturbations in the form of normal modes are

computed using a one-dimensional linear model constructed by linearizing (7) about (9) and

substituting (10) for the perturbation fields. The independent variables are the real and

imaginary parts of û
′(p)
ξ (φ, t), v̂

′(p)(φ, t), ŵ
′(p)
ζ (φ, t), and b̂

′(p)(φ, t) evaluated on the discretized

φ axis. Singular vectors additionally require the corresponding adjoint model, which was

developed using the utility TAMC (Giering and Kaminski 1998).

The nonlinear integrations used for generating the basic states are performed at high

enough resolution to resolve scales down to close to the Kolmogorov scale of three-dimensional

turbulence, here a few metres. Note that while the model is two dimensional in space, the

velocity field is three dimensional, and crucially, the vortex tube tilting mechanism is active.

As a result, the turbulence that develops is more like three-dimensional turbulence, with a

direct cascade of energy to small scales, than it is like two-dimensional turbulence with its

inverse cascade. Such a model is therefore sometimes referred to as 2.5D (Achatz 2007).

The secondary singular vectors are computed using a two-dimensional model to solve

the system (13) with solutions of the form (15) inserted. The dependent variables are the

real and imaginary parts of û′
‖(x‖, φ, t), v̂

′
⊥(x‖, φ, t), ŵ

′
ζ(x‖, φ, t), and b̂′(x‖, φ, t) evaluated on

the discrete x‖-φ grid. Again, the corresponding adjoint model required for finding singular

vectors was developed with the help of TAMC.

For all models, the spatial discretization is a staggered one- or two-dimensional C grid

(see, for example, Durran 1999) and the time stepping is performed using a third-order-

accurate Runge-Kutta method. Eigenvalues are computed iteratively using a variant of the

Arnoldi process with the FORTRAN library ARPACK (Lehoucq et al. 1998).
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3. Singular vectors

Singular vector analysis (Farrell and Ioannou 1996a,b) of a linear system finds the pertur-

bations whose energy (or another norm) grows by the largest factor in a given optimization

time. Consider a discrete system of the form

dx

dt
= Ax, (18)

where x is a vector and A is a real, possibly time dependent matrix, and introduce a norm

||x||2 ≡ xT
Mx. (19)

Then, given an optimization time τ , define the propagator matrix Φ(τ) such that

x(τ) = Φ(τ)x(0). (20)

It can be shown that the initial perturbation x(0) that maximizes the growth factor

σ ≡ ||x(τ)||
||x(0)|| (21)

is the leading eigenvector of the matrix M
−1
Φ

T
(τ)MΦ(τ). It can furthermore be shown that

the eigenvectors {pk} of the matrix, called singular vectors, are mutually orthogonal with

respect to the inner product induced by M, as are the vectors {Φ(τ)pk}. Note that since the

propagator matrix Φ(τ) is never calculated explicitly, the appearance of the adjoint matrix

Φ(τ)T means that in practice the adjoint model corresponding to the discrete tangent linear

model must be developed.

If A is independent of time, as is the case for the primary instability problem, the normal

modes of (18) may be computed. The spatial structure of the normal modes is given by the

eigenvectors of A, and the real parts of the corresponding complex eigenvalues represent the

growth or decay rates. Since computing the full set of normal modes involves finding the

eigenvectors of a very large matrix, and since we are interested in only the normal modes

with largest growth rates, it is advantageous to work with the matrix exp(τA), obtained
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approximately by integrating the linear system (18) for some finite time τ . Its eigenvectors

are the same as those of A, and its complex eigenvalues are of the form Λ = eλrteiλit, where

λr + iλi is an eigenvalue of A. The Arnoldi iteration is used to find the eigenvalues Λ with

the largest square moduli, which correspond to the growth factors of the leading normal

modes after time τ .

Since the inertia-gravity wave is independent of time in the rotated and co-moving ref-

erence frame, the primary perturbations can be either singular vectors or normal modes,

depending on the application. However, since the basic state for secondary perturbations is

time-dependent, of the two, only singular vector analysis may be applied.

4. Primary instabilities

Achatz (2005) calculated the leading normal modes and singular vectors for a wide range

of IGW parameter choices, from which Achatz (2007) identified a few cases in which initial

perturbations lead to significant decay of the original wave in corresponding nonlinear simu-

lations. We focus here on the case of an IGW with wavelength 6 km and propagation angle

89.5◦ to the horizontal, propagating on an f -plane centred at latitude 70 N, and consider

both a statically unstable wave, with nondimensional amplitude a = 1.2 (zonal velocity

amplitude of 29 m s−1), and a statically and dynamically stable wave, with nondimensional

amplitude a = 0.86 (zonal velocity amplitude of 21 m s−1). The waves have a period of

approximately 8 hours.

The leading perturbations all have energy initially concentrated near the level of minimum

static stability, i.e. where ∂B(0)/∂z is most negative, which is located near φ = 3π/2 for the

IGW solution (9). At the same level, there is maximum vertical shear in the transverse

velocity component V (0) and the parallel velocity component U
(0)
ξ has a local minimum. The

regions with vertical shear in U
(0)
ξ are located one quarter wavelength above and below the

level of minimum static stability.
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For the statically unstable wave, Achatz (2007) found that in nonlinear simulations,

perturbation of the IGW by its leading normal mode was more effective in initiating wave

breaking than perturbation by its leading singular vector. The left panel of Fig. 1 shows the

growth factor after 5 minutes as a function of wavelength in the ξ-y plane for the limiting

cases of parallel perturbations (ky = 0), where the perturbation varies in the ξ direction,

and transverse perturbations (kξ = 0), where the perturbation varies in the y direction.

While short wavelength parallel perturbations have the larger growth factors, long wave-

length transverse perturbations lead to more dissipation of the original inertia-gravity wave

(see Fig. 4 of Achatz 2007). An interpretation of this is that the shorter wavelength struc-

tures also have shorter scale in the phase direction, which leads to the formation of strong

gradients, an earlier onset of Kelvin-Helmholtz type instabilities, and relatively rapid non-

linear saturation of the initial instability. Slower developing, larger scale structures (with

correspondingly weaker gradients) that propagate in the phase direction can draw energy

from the shear in all parts of the wave, initially through buoyancy conversion and the gen-

eralized Orr mechanism, and later through the more efficient generalized roll mechanism as

the perturbation propagates away from the level of minimum static stability toward regions

of shear in Uξ.

Here we therefore focus on the case where the leading transverse normal mode, which has

a wavelength λy of 7.943 km, is the initial perturbation to the statically unstable IGW. The

two-dimensional nonlinear model was run in a 7.943 km × 6 km doubly periodic rectangular

domain with 1152 points in each of the y and ζ directions (noting that the model uses

φ ∈ [0, 2π] as vertical coordinate) for a spatial resolution of about 6 m. The initial amplitude

of the normal mode was such that the maximum perturbation energy density was 5% of

the energy density of the IGW, the latter being uniform in space. This choice was large

enough that nonlinear effects become significant and small enough that the flow has not yet

become turbulent before the five minute optimization time of the secondary singular vector

calculation has passed. Fig. 2 shows the basic state B, Uξ and V fields at the initial time,
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after 5 minutes (the optimization time for the secondary singular vector calculations), and

after 20 minutes.

For completeness, we also investigated the leading parallel normal mode, which has a

wavelength λξ of 501 m. The nonlinear model was run with 2304 points in the ζ direction

and 288 in the ξ direction. As was found by Achatz (2007), perturbation growth in the 2.5D

simulations is dominated by the transverse component of velocity, V , shown in Fig. 3 at

the initial time, after 3 minutes and after 20 minutes. Notice that the perturbation remains

much more localized near φ = 3π/2 than in the transverse normal mode case (Fig. 2). For

the secondary singular vector calculation, a short optimization time of 3 minutes was chosen

because the basic state fields become filamented and then turbulent earlier than in the case

with a transverse primary perturbation.

Achatz (2005) showed numerically that no exponentially growing normal modes exist

for the statically stable IGW considered here (its amplitude is such that the Richardson

number is slightly greater than 1/4), but that the leading singular vectors were nevertheless

effective in leading to breaking of the original wave. The right panel of Fig. 1 shows the

growth factor after an optimization time of 5 minutes as a function of horizontal wavelength

in the ξ-y plane for the leading parallel and transverse singular vectors. As in the case of

the statically unstable IGW, nonlinear simulations show that the longer-wavelength leading

transverse perturbations lead to more effective breaking than the faster growing shorter

wavelength parallel perturbations. We therefore use the leading transverse singular vector,

with a wavelength λy = 3.162 km, as the initial perturbation for the basic state. Since the

spatial structure of the singular vector changes with time, the initial amplitude of the singular

vector is especially significant, affecting the spatial structure of the fields as nonlinear effects

become important. We chose an initial amplitude of the perturbation to be such that the

maximum perturbation energy density is 10% of the energy density in the IGW. For these

simulations, we again used a rectangular domain with sides equal to the wavelengths of the

primary perturbation and the IGW, 3.162 km in the y direction and 6 km in the ζ direction,
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with, respectively, 1152 points and 2304 points for a spatial resolution of approximately 3 m.

Fig. 4 shows the basic state fields at the initial time, after 5 minutes, and after 20 minutes.

5. Secondary instabilities

The secondary instability analysis proceeds as follows: The Boussinesq equations (7) are

linearized about one of the time dependent basic states described above, i.e. the nonlinear

two-dimensional simulations initialized with either a statically unstable IGW perturbed by

its leading parallel or transverse normal mode or a statically stable IGW perturbed by

its leading transverse singular vector. A solution of the form (15) is substituted into the

resulting linearized equations (13), yielding a set of partial differential equations for the

complex amplitudes û′
‖, v̂

′
⊥, ŵ

′
ζ , and b̂′ with coefficients periodic in the x‖ and φ directions

and in which the wavelength of the perturbation in the y⊥ direction, λ⊥ = 2π/k⊥, is a

parameter.

The secondary instabilities in which we are interested are of larger scale than the 3 m to

6 m scale resolved by the nonlinear simulations, and the hundreds of integrations necessary

to determine the leading singular vectors at such high resolution would be prohibitively

expensive in terms of computing resources. We found that a grid of 128 × 512 points (a

resolution of 25-50 m in the y direction and the equivalent of 10 m in the φ direction) was

sufficient for the two cases with transverse primary perturbations, the higher resolution in

the φ direction required because the gradients in the basic state are predominantly in the φ

direction. For the statically unstable IGW perturbed by its leading parallel normal mode,

the same 128 × 512 grid was used, representing a more isotropic resolution of 5 to 10 m in

both the ξ and φ directions.

Due to the symmetry of the system, for finite λ⊥, the singular vectors come in pairs with

identical growth factors and spatial structures, corresponding to phase shifts of π/2 in all

variables. We will not distinguish between degenerate singular vectors and by the terms lead-
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ing, second-leading, and trailing singular vectors, refer to non-degenerate perturbations. The

mode with k⊥ = 0 (i.e. λ⊥ = ∞) is not degenerate, and may be thought of as a modification

of the primary instability due to the nonlinear evolution of the primary perturbation.

We consider the cases of the statically unstable and statically stable IGW separately

in terms of the growth factors and spatial structure of the leading singular vectors and

the dominant energy conversion mechanisms. The singular vectors are then compared to

integrations of the linear model initialized with a random perturbation with |k|−5/3 energy

density spectrum, where k is the perturbation wavevector in the x‖-ζ plane, corresponding

to an isotropic three-dimensional turbulent flow.

a. Statically unstable IGW and transverse primary NM

We begin with the case of the statically unstable IGW perturbed by its leading transverse

normal mode (cf. Fig. 2). For transverse primary perturbations, y⊥ = −ξ and λ⊥ = λξ.

Fig. 5 shows growth factors for the leading singular vectors plotted against λξ. The growth

factor of the leading singular vector is indicated by the solid curve and of the second leading

singular vector by the dashed curve. The single largest growth factor occurs for λξ = 150 m,

but there is a second peak in the growth factor curve of the second leading singular vector

at a wavelength of about 800 m. At each of the two peaks, the 20 leading singular vectors

were computed and their growth factors are indicated by filled diamonds. Shown in the right

panel of the figure are the growth factors of the ensemble of initially random perturbations.

The growth factors of the randomly initialized integrations are naturally much smaller than

those of the singular vectors, the latter being optimally initialized to maximize the growth

factor. One notices again two peaks, one near λξ = 215 m, and the other near λξ = 800 m.

Here, the longer wavelength peak is higher than the shorter wavelength peak. This might be

explained by the fact that for λξ = 800 m, the growth factors of the leading singular vectors

are closer together, while at the λξ = 150 m peak, the growth factor decreases quickly after

the leading singular vector. The random initializations at λξ = 800 m therefore project onto
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more singular vectors with significant growth factors.

Fig. 6 shows contours of perturbation vertical velocity amplitude ŵ′
ζ corresponding to

the leading singular vector at λξ = 150 m plotted over the basic state buoyancy field at the

initial time, halfway to the optimization time, and at the optimization time. Notice how the

time dependent structure of the singular vector follows the location of maximum negative

vertical buoyancy gradient.

For the leading few singular vectors at each of the peaks in the growth factor curve and

for the randomly initialized integrations at the same values of λξ, the integrated energy

conversion rate densities decomposed into contributions from the shears in each velocity

component and from the buoyancy gradient (see Eq. 17) are plotted as functions of time

in Fig. 7. The contributions due to gradients of B represent buoyancy conversion, and the

contributions due to shear in Uξ and V represent growth through the generalized Orr and

roll mechanisms respectively. The linear model is integrated past the optimization time to

see how robust the growth captured by the singular vectors is. All curves are normalized

by the total perturbation energy at each time and can be interpreted as instantaneous

effective growth rates. The energy conversion rates of the leading singular vector match

qualitatively with the corresponding curves for the random initialzations. The dominant

growth mechanism is buoyancy conversion throughout, with a late contribution from the roll

mechanism (growth due to shear in V ). This is consistent with the earlier noted observation

that the energy in the singular vector is concentrated near the location of maximum negative

buoyancy gradient. The randomly initialized integrations take time to become organized but

the energy conversion rate curves match those of the singular vector close to and beyond the

optimization time. The small variation in the conversion curves for the random ensemble,

indicated by error bars, and their resemblance to those of the singular vector suggest that

the dynamics of the singular vectors is representative of the instability of the basic state.

For λξ = 800 m the picture is somewhat different. In this case the second-leading

and trailing singular vectors (not shown for trailing singular vectors) more closely resemble
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the random ensemble than does the leading singular vector (see Fig. 8). While buoyancy

conversion is the most important mechanism at early times, nearer the optimization time

growth due to shear in Uξ takes over. Contours of perturbation vertical velocity are shown

in Fig. 9 over contours of basic state Uξ at the initial time, at half the optimization time,

and at the optimization time for both the second leading singular vector and for one of the

randomly initialized integrations. The structures in the singular vector perturbation field

are larger scale in y and ζ than their counterparts in the λξ = 150 m case (Fig. 6). This

isotropic scaling (here the scales in all three directions are on the order of 1 km) seems to

be a generic phenomenon: growing perturbations of larger scale in the ξ direction also have

larger scales in the y and ζ directions. Also, the initial concentration of perturbation energy

in the singular vector does not coincide with a region of strong gradient in Uξ, but it does

in the later snapshots. This is consistent with the energy conversion rates plotted in Fig. 8,

where growth due to shear in Uξ becomes important only at later times. The final state of

the randomly initialized integration qualitatively resembles that of the singular vector.

b. Statically unstable IGW and parallel primary NM

For the case of the statically unstable IGW perturbed by its leading parallel normal mode

(cf. Fig. 3), x‖ = ξ and λ⊥ = λy. Fig. 10 shows the growth factors after three minutes of

secondary perturbations as functions of λy for the leading singular vectors and an ensemble

of randomly initialized integrations. There is very close agreement in terms of the position

of the peak and the shape of the growth factor curves, probably because the leading singular

vector is so dominant. The spatial structures of the û′
ξ, v̂

′, and ŵ′
ζ components of the leading

singular vector with λy = 270 m are shown in Fig. 11. The perturbations are aligned with

the region of strongest gradient in the basic state V field, again consistent with the energy

conversion rates (Fig. 12), which are dominated by terms proportional to the gradient of V .

Note that while the secondary instabilities of the IGW perturbed by its leading transverse

NM resemble the parallel primary instabilities in terms of length scale and growth mecha-
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nism, in this case the filamentation that occurs due to the rapid growth of the small-scale

primary perturbation leads to shear instabilities before the large-scale transverse pertur-

bations can grow through the Orr mechanism associated with vertical shear in Uξ. The

small-scale primary and secondary instabilities will, inevitably, saturate rapidly in nonlinear

three-dimensional simulations and are probably not as relevant as the transverse primary

perturbations which lead to more significant dissipation of the original wave.

c. Statically stable IGW and transverse primary SV

The results for the secondary instabilities of the statically stable IGW are somewhat less

clear, but we can still draw conclusions in terms of scales and growth mechanisms like we

did in the case of the statically unstable wave.

Growth factors for the leading secondary singular vectors plotted against λξ for the

statically stable wave are shown in Fig. 13, along with the corresponding growth factor

curves for an ensemble of randomly initialized integrations. There is a single peak near

λξ = 485 m, but the largest growth factors occur for λξ = ∞. The growth factors of the

leading 20 singular vectors at λξ = 485 m are indicated by the filled diamonds, and at

λξ = ∞ by the horizontal line segments at the right edge of the figure. The growth factor

curves for the ensemble of randomly initialized runs do not show a single clear peak, although

individual cases (each curve represents the same initial distribution in y and φ but with a

different value of λξ) have local maxima at λξ < 1 km, and, like the leading singular vector

curve, tend to increase as λξ becomes very large.

The energy conversion rates as functions of time are shown in Fig. 14 for the leading

singular vectors and randomly initialized integrations for both λξ = 485 m and λξ = ∞.

As in the statically unstable IGW case, the linear integrations are extended beyond the

optimization time. While the infinite wavelength runs have larger growth factors at the

optimization time (5 minutes), for a longer run (10 minutes), the short wavelength runs

have much higher growth factors (the growth factors are not shown, but are reflected in the
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higher conversion rates past the optimization time). For λξ = 485 m, the dominant energy

conversion mechanism is the generalized Orr mechanism (growth due to interaction with

shear in Uξ). For λξ = ∞ both buoyancy conversion and the Orr mechanism are significant.

At later times, and especially beyond the optimization time, the randomly initialized runs

show very similar behaviour to the leading singular vector.

For the λξ = 485 m perturbations, Fig. 15 shows the energy conversion rate densities

due to, respectively, the buoyancy gradient and shear in Uξ and V as functions of space

at the optimization time for both a randomly initialized integration and the same initial

condition projected onto the leading 20 singular vectors. The spatial distribution of the

energy conversion in the full field is largely represented by just the leading singular vectors.

At the optimization time buoyancy conversion is no longer the dominant growth mechanism

for perturbations but is in fact an energy sink. The dominant mechanism at the optimization

time is the generalized Orr mechanism, and as one would expect, it acts in regions of strong

gradients in Uξ (compare with the centre panel of Fig. 4). Note that this result for the

secondary singular vector might be compared with the case of the leading parallel primary

singular vector, whose growth is dominated by buoyancy conversion and the roll mechanism

(Achatz 2005). Evidently the effect of the transverse primary perturbation is to change the

nature of the leading instability with respect to perturbations varying in the ξ (parallel)

direction.

6. Summary and discussion

We have demonstrated a systematic, computationally economical method for investigat-

ing the three dimensionalization of turbulence in breaking inertia gravity waves (IGW) in

the Boussinesq equations. In earlier studies, Achatz (2005; 2007) computed leading linear

instabilities (normal modes and singular vectors) of IGW as functions of perturbation wave-

length and orientation relative to the direction of IGW propagation and used high-resolution
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“2.5D” simulations to identify the perturbations most important for wave breaking. In the

present study, we have applied singular vector analysis to the equations linearized about

nonlinearly evolving basic states, focusing on two cases identified by Achatz (2007) as lead-

ing to significant dissipation of the IGW in the 2.5D simulations: a statically unstable IGW

perturbed by its leading transverse normal mode, and a statically stable IGW perturbed by

its leading transverse singular vector.

The singular vector results suggest that the dominant spatial scales of the secondary in-

stabilities are an order of magnitude shorter than the scales of the IGW (and of the leading

tranverse primary perturbations). For the statically unstable IGW with wavelength λ = 6

km, perturbed by a transverse normal mode with wavelength λy ≈ 8 km, the leading sec-

ondary singular vector has wavelength of just λξ = 150 m. The singular vector growth factor

spectrum has a second peak near λξ = 800 m, and randomly initialized linear integrations

suggest that the longer wavelength perturbations grow on average somewhat faster than per-

turbations of the shorter scale of the leading singular vector. Two important points to note

are that the scale of the spatial structures of the leading secondary perturbations in the y-ζ

plane is similar to the wavelength of the perturbations in the ξ direction (isotropic scaling)

and that the dominant growth mechanism depends on the spatial scale – buoyancy driven

production of potential energy for the short perturbations and for the longer perturbations,

the generalized Orr mechanism of growth due to shear in the basic state velocity component

Uξ.

For the statically stable IGW perturbed by its leading transverse singular vector of wave-

length λy ≈ 3 km, the secondary perturbations with the largest growth after an optimization

time of 5 minutes have infinite λξ (i.e. they do not vary in the ξ direction), but longer in-

tegrations of the linear model show that perturbations with λξ = 485 m grow significantly

more.

We also consider the statically unstable IGW perturbed its leading parallel normal mode,

which has the largest linear growth rate of any perturbation but appears to saturate quickly
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in 2.5D simulations without leading to strong dissipation of the original wave. Like the

primary perturbations, the leading secondary singular vectors in this case grow through a

shear instability associated with basic state V .

A weakness of singular vector analysis as a diagnostic tool is that the spatial structures it

identifies are time-dependent, so they cannot be expected to be recognized in observations.

To address this point, we compared the growth factor spectra, spatial scales and growth

mechanisms of the singular vectors with randomly initialized integrations of the linear model

and found consistent agreement. A natural question is how much of the growth of random

perturbations can be “explained” by the leading singular vectors. Since singular vectors

are mutually orthogonal at both the initial and optimization times, it is a simple matter

to project the state at the optimization time of the randomly initialized integrations onto a

subset of the singular vectors. The energy not contained in the leading n singular vectors

for λξ = 150 m and λξ = 800 m for the statically unstable IGW perturbed by its leading

transverse NM and λξ = 485 m for the statically stable IGW is plotted against n in Fig. 16.

Between about 10% and 30% of the total perturbation energy is contained in the leading 20

singular vectors. This is considerable since the discretized system has on the order of 104

degrees of freedom.

Since wave-breaking is an inherently three dimensional and multi-scale phenomenon,

definitive conclusions require three-dimensional nonlinear simulations with high enough reso-

lution to resolve the small scales of turbulence and domains large enough to contain the large-

scale instabilities which dominate the early phase of wave breaking. While high-resolution

three-dimensional numerical simulations of breaking high frequency gravity waves have been

done (Fritts et al. 2009a,b), to our knowledge no such simulations of breaking low-frequency

inertia-gravity waves (waves affected by rotation) have yet been done. Our results suggest

that the scales of the instabilities are such that the dominant structures can be contained

in a domain considerably smaller than the cube of the wavelength of the IGW, and the

rotated coordinate system allows for the accommodation of the very large horizontal scale
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of IGW in the earth frame. Such simulations, initialized with the IGW, a leading primary

perturbation, and a leading secondary singular vector, would serve as data for evaluating

large eddy simulation (LES) methods as well as gravity-wave drag parameterization schemes

used in climate and general circulation models.
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Statically Unstable IGW Statically Stable IGW

IGW amplitude with
respect to static instability

a = 1.2
(û = 29 m s−1)

a = 0.86
(û = 21 m s−1)

IGW wavelength, period 6 km, 8 h 6 km, 8 h

Primary perturbation

trans. NM: λy = 7.943 km

para. NM: λξ = 501 m

ampl. Emax
pert/EIGW = 5%

trans. SV: λy = 3.162 km

ampl. Emax
pert/EIGW = 10%

Resolution of nonlinear
2.5D simulation (nx‖ × nφ)

trans. NM: 1152 × 1152

para. NM: 288 × 2304
trans. SV: 1152 × 2304

Resolution for secondary
singular vector calculation
(nx‖ × nφ)

128 × 512 128 × 512

Wavelengths of leading
secondary perturbations

trans. NM: λξ = 150 m, 800 m

para. NM: λy = 270 m
λξ = 485 m, ∞

Table 1. Summary of model parameters.
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in Uξ (rumean), and gradients of B (rbmean), and decay due to viscosity and

diffusion (dissip). All curves are normalized by the total perturbation energy.

In the right panel, error bars represent the standard deviation about the mean

over the ensemble of integrations. 42

8 As in Fig. 7 but for the λξ = 800 m leading singular vector (left), the second-

leading singular vector (middle) and the randomly initialized integrations

(right). 43
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9 Contours of perturbation vertical velocity amplitude ŵ′
ζ for secondary pertur-

bations with λξ = 800 m to the statically unstable IGW over the basic state

parallel velocity field Uξ (shading, cf. upper and middle centre panels in Fig.

2) at the initial time, half way to the optimization time and at the optimiza-

tion time. Top row: second leading singular vector. Bottom row: randomly

initialized integrations. Contours of ŵ′
ζ are as in Fig. 6. 44

10 Growth factor of leading secondary singular vectors (left) and randomly ini-

tialized integrations (right) versus wavelength in the y direction for the IGW

perturbed by its leading parallel normal mode. 45

11 Contours of perturbation velocity amplitude û′
ξ, v̂

′, and ŵ′
ζ , over basic state

transverse velocity field V (shading) for secondary perturbations with λy =

270 m to the statically unstable IGW perturbed by its leading parallel normal

mode at initial time (top row) and optimization time (bottom row). Contours

are normalized by perturbation total energy as in Fig. 6. 46

12 As in Fig. 7 but for the IGW perturbed by its leading parallel normal mode:

leading singular vector (left) and randomly initialized integrations (right) with

λy = 270 m. 47

13 As in Fig. 5 but for the perturbed statically stable IGW. Horizontal lines at

right edge of left panel represent growth factors for λξ = ∞. 48

14 As in Fig. 7 but for λξ = 485 m (top row) and λξ = ∞ (bottom row) and

statically stable IGW. 49
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15 Statically stable IGW case. Energy conversion rate density involving gradients

of B (left), shear in Uξ (centre), and shear in V (right) at the optimization time

for a randomly initialized integration (bottom) and the same initial condition

projected onto the leading singular vectors (top). Shading is scaled so as to

show the sign (light positive, dark negative) and spatial distribution of each

energy conversion mechanism but not the relative magnitudes of the three

contributions. 50

16 Fraction of final perturbation energy of randomly initialized integrations not

contained in the projection onto the leading 20 singular vectors. Plotted is

the mean of
√

(E ′
total − E ′

n)/E
′
total, where E ′

n is the energy contained in the

projection onto the leading n singular vectors, over an ensemble of 50 ran-

domly initialized integrations. Error bars indicate standard deviation about

the mean. 51

35



0 2 4 6 8 10
0

1

2

3

4

5

6

7

Wavelength (km)

gr
ow

th
 fa

ct
or

Statically unstable IGW
leading normal mode

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Wavelength (km)

gr
ow

th
 fa

ct
or

Statically stable IGW
leading singular vector

parallel

transverse

parallel

transverse

Fig. 1. Growth factor after 5 minutes of leading normal mode perturbations to statically un-
stable IGW (left) and singular vector perturbations to statically stable IGW (right). Growth
factors of parallel perturbations (solid lines, varying in the ξ direction) and transverse per-
tubations (dashed lines, varying in the y direction) are shown.
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Fig. 2. Buoyancy B, parallel velocity Uξ and transverse velocity V at the initial time, after
five minutes, and after 20 minutes of a nonlinear integration of the statically unstable IGW
perturbed by its leading transverse normal mode. Vertical axis is φ and horizontal axis is
y/λy, where λy = 7.943 km is the wavelength of the primary perturbation. Positive values
represented by black contours on white background and negative values by white contours
on shaded background. Contour intervals are 0.12 m s−2 for B, 6.7 m s−1 for Uξ and 6.0
m s−1 for V .
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Fig. 3. Transverse velocity V as a function of ξ and φ at the initial time, after three
minutes, and after 20 minutes of a nonlinear integration of the statically unstable IGW
perturbed by its leading parallel normal mode, which has wavelength λξ = 501 m. Positive
values represented by black contours on white background and negative values by white
contours on shaded background. Contour intervals are 3.6 m s−1.
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Fig. 4. As in Fig. 2 but for the statically stable IGW perturbed by its leading transverse
singular vector. Contour intervals are 0.06 m s−2 for B and 2.3 m s−1 for Uξ and V .
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Fig. 5. Left: Growth factor of leading secondary singular vectors versus wavelength in
the ξ direction for the basic state consisting of the statically unstable inertia-gravity wave
perturbed by its leading transverse normal mode. Filled diamonds represent the leading 20
singular vectors at λξ = 150 m and λξ = 800 m. Right: Growth factors for an ensemble of
randomly initialized integrations with heavy dashed line representing the ensemble mean.
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Fig. 6. Contours of perturbation vertical velocity amplitude ŵ′
ζ for the leading secondary

singular vector (with λξ = 150 m) of the perturbed statically unstable IGW over the basic
state buoyancy field (shading, cf. upper- and middle-left panels of Fig. 2) at the initial time,
half way to the optimization time and at the optimization time. Initially concentrated near
maximum negative buoyancy gradient, the perturbation migrates in space with time due to
advection by the basic state V and Wζ fields. Contours of ŵ

′
ζ are in increments of 20% of the

maximum value at the corresponding time (amplitudes are increasing roughly exponentially
with time). Black (white) contours represent positive (negative) values.
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Fig. 7. Energy conversion rates versus time for λξ = 150 m leading singular vector (left) and
random initialized integrations (right). Curves represent total perturbation energy growth,
growth or decay due to shear in V (rvmean), shear in Uξ (rumean), and gradients of B
(rbmean), and decay due to viscosity and diffusion (dissip). All curves are normalized by
the total perturbation energy. In the right panel, error bars represent the standard deviation
about the mean over the ensemble of integrations.
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Fig. 8. As in Fig. 7 but for the λξ = 800 m leading singular vector (left), the second-leading
singular vector (middle) and the randomly initialized integrations (right).
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Fig. 9. Contours of perturbation vertical velocity amplitude ŵ′
ζ for secondary perturbations

with λξ = 800 m to the statically unstable IGW over the basic state parallel velocity field Uξ

(shading, cf. upper and middle centre panels in Fig. 2) at the initial time, half way to the
optimization time and at the optimization time. Top row: second leading singular vector.
Bottom row: randomly initialized integrations. Contours of ŵ′

ζ are as in Fig. 6.
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Fig. 10. Growth factor of leading secondary singular vectors (left) and randomly initialized
integrations (right) versus wavelength in the y direction for the IGW perturbed by its leading
parallel normal mode.
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Fig. 11. Contours of perturbation velocity amplitude û′
ξ, v̂

′, and ŵ′
ζ , over basic state trans-

verse velocity field V (shading) for secondary perturbations with λy = 270 m to the statically
unstable IGW perturbed by its leading parallel normal mode at initial time (top row) and
optimization time (bottom row). Contours are normalized by perturbation total energy as
in Fig. 6.
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Fig. 12. As in Fig. 7 but for the IGW perturbed by its leading parallel normal mode:
leading singular vector (left) and randomly initialized integrations (right) with λy = 270 m.
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Fig. 13. As in Fig. 5 but for the perturbed statically stable IGW. Horizontal lines at right
edge of left panel represent growth factors for λξ = ∞.
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Fig. 14. As in Fig. 7 but for λξ = 485 m (top row) and λξ = ∞ (bottom row) and statically
stable IGW.
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Fig. 15. Statically stable IGW case. Energy conversion rate density involving gradients
of B (left), shear in Uξ (centre), and shear in V (right) at the optimization time for a
randomly initialized integration (bottom) and the same initial condition projected onto the
leading singular vectors (top). Shading is scaled so as to show the sign (light positive, dark
negative) and spatial distribution of each energy conversion mechanism but not the relative
magnitudes of the three contributions.
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Fig. 16. Fraction of final perturbation energy of randomly initialized integrations not
contained in the projection onto the leading 20 singular vectors. Plotted is the mean of
√

(E ′
total − E ′

n)/E
′
total, where E ′

n is the energy contained in the projection onto the leading
n singular vectors, over an ensemble of 50 randomly initialized integrations. Error bars
indicate standard deviation about the mean.
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