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ABSTRACT5

A reduced asymptotic model valid for the planetary and synoptic scales in the atmo-6

sphere is presented. The model is derived by applying a systematic multiple scales asymp-7

totic method to the full compressible flow equations in spherical geometry. The synoptic8

scale dynamics in the model is governed by modified quasi-geostrophic equations which take9

into account planetary scale variations of the background stratification and of the Corio-10

lis parameter. The planetary scale background is described by the planetary geostrophic11

equations and a new closure condition in the form of a two-scale evolution equation for12

the barotropic component of the background flow. This closure equation provides a model13

revealing an interaction mechanism from the synoptic scale to the planetary scale.14

To obtain a quantitative assessment of the validity of the asymptotics, the balances on15

the planetary and synoptic scales are studied by utilizing a primitive equations model. For16

that purpose spatial and temporal variations of different terms in the vorticity equation are17

analyzed. It is found that for planetary scale modes the horizontal fluxes of relative and18

planetary vorticity are nearly divergence free. It is shown that the results are consistent19

with the asymptotic model.20

1. Introduction21

Many atmospheric phenomena important for the low-frequency variability (periods longer22

than 10 days) are characterized by planetary spatial scales, i.e., scales of the order of the23

earth’s radius ≈ 6× 103 km. Such phenomena are the orographically and thermally induced24

quasi-stationary Rossby waves, eddy-driven teleconnection patterns such as the Northern25

and Southern Annular Modes (NAM,SAM), Pacific/North American Pattern (PNA) or the26

North Atlantic Oscillation (NAO), large-scale ultralong persistent blockings and the po-27

lar/subtropical jet. On the other hand the synoptic eddies, which are responsible for the28

variability with periods of 2-6 days, have as a characteristic length scale the internal Rossby29
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deformation radius (Pedlosky 1987), which is around 1000 km. Although the spatial and30

temporal separation between the planetary and synoptic scale atmospheric motion is not31

so pronounces as in the ocean, the different scales are evident in spectral analyses of tro-32

pospheric data: observations (e.g. Blackmon 1976; Fraedrich and Böttger 1978; Fraedrich33

and Kietzig 1983) as well as simulations (e.g. Gall 1976; Hayashi and Golder 1977) show34

the presence of isolated peaks in the wavenumber-frequency domain. Fig. 1 (taken from35

Fraedrich and Böttger (1978)) displays three such peaks in the spectrum of the meridional36

geostrophic wind. There is a maximum associated with the quasi-stationary Rossby waves37

with zonal wavenumber k = 1-4 and with periods larger than 20 days. The other two maxima38

at k = 5-6 and at k = 7-8 result from the synoptic waves. These are eastward propagat-39

ing long and short waves associated with different background stratifications (Fraedrich and40

Böttger 1978). The overall picture of three maxima persists during the different seasons41

for the Northern Hemisphere, indicating a separation between the planetary and the syn-42

optic scales. However, the interactions between the two scales are of great relevance to the43

atmospheric dynamics as stressed in many studies (e.g. Hoskins et al. 1983).44

The fast growth of computational resources in atmospheric sciences over the last decades45

leads to a huge increase of complexity in atmospheric models. This becomes apparent,46

if one considers the development of the comprehensive general circulation models (GCMs).47

However, as simulations with those models become more and more closer to observations, the48

interpretation of the results with regard to improving the models as well as the understanding49

of the climate system becomes more difficult. This stresses the importance of simplified50

models, utiliezed for studies of many aspects of the circulation, such as instability, wave51

propagation and interaction. As discussed by Held (2005), the development of a hierarchy52

of reduced models provides a tool for systemetic improvement of the comprehensive models53

and thereby contributes to our understanding of the climate system .54

One prominent example (if not the most prominent) of simplified model equations is the55

quasi-geostrophic (QG) theory (Charney 1948), which describes the baroclinic generation56
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and evolution of the synoptic scale eddies. This theory is derived under the assumption of a57

horizontally uniform background stratification and small variations of the Coriolis parameter58

(Pedlosky 1987), an assumption which is often violated if one considers motions on a plan-59

etary scale (such as the one mentioned in the first paragraph). Reduced model equations,60

which do not make use of the latter assumption and model planetary scale motions, are61

the planetary geostrophic equations (PGEs; Robinson and Stommel 1959; Welander 1959;62

Phillips 1963). The PGEs describe balanced dynamics, however the relative vorticity advec-63

tion is absent in the potential vorticity (PV) equation (the consequences we will discuss later64

on). Much effort has been made to develop simplified models valid for the planetary and65

synoptic scale and for the interactions between the two scales. Pedlosky (1984) proposed66

a two-scale model for the ocean circulation, where the dynamics on the large scale is gov-67

erned by the PGEs and the dynamics on the small scale by a modified QG equation, which68

is influenced by the large scale. Mak (1991) incorporated in the QG model effects due to69

spherical geometry of the earth by considering higher order terms. Vallis (1996) introduced70

the geostrophic PV model, which can be reduced to QG or to PG model by imposing an71

appropriate scaling. Numerical simulations (Mundt et al. 1997) with the geostrophic PV72

model showed, that this model improves the circulation patterns over the latter classical73

models. Luo developed multi-scale models for planetary-synoptic interaction and applied74

them for studies of blockings (Luo et al. 2001; Luo 2005) and NAO dynamics (Luo et al.75

2007).76

In a previous paper (Dolaptchiev and Klein 2009, hereafter DK) we presented reduced77

model equations valid for one particular regime of planetary scale atmospheric motions, we78

refer to this regime as the planetary regime (PR). In the PR we consider the planetary79

horizontal scales and a corresponding advective time scale of 7 days (see Fig. 2). The80

PR model includes the PGEs and a novel evolution equation for the barotropic flow. As81

discussed in DK, in applications to the atmosphere of the PGEs the barotropic flow has82

to be specified, because there is no advection of relative vorticity in the PGEs. The novel83
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evolution equation in the PR provides a prognostic alternative relative to temperature-based84

diagnostic closures for the barotropic flow adopted in reduced-complexity planetary models85

(Petoukhov et al. 2000). The PR model takes into account large variations of the background86

stratification and of the Coriolis parameter, but it does not describe the synoptic eddies. This87

limitation motivate an extension of the validity region of the single-scale PR-model to the88

synoptic spatial and temporal scales (see Fig. 2). In this paper we apply the same asymptotic89

approach from DK, but utilizing now a two scale expansion resolving both the planetary90

and the synoptic scales. In doing so we can take into account in a systematic manner the91

interactions between the planetary and the synoptic scales with particular attention payed on92

the barotropic component of the background flow. Part of the derived model equations can93

be regarded as the anelastic analogon of Pedlosky’s two scale model for the large-scale ocean94

circulation (Pedlosky 1984). But whereas the latter model describes only interaction from95

the planetary to the synoptic scale, in the present model there is an additional planetary scale96

evolution equation for the vertically averaged pressure which provides a reverse interaction97

(from the synoptic to the planetary scale dynamics) in the form of momentum fluxes due98

to the synoptic scale velocity field. This type of feedback on the planetary scale differs99

from the one recently proposed by Grooms et al. (2011), where the PGEs are influenced by100

the synoptic scale through eddy buoyancy fluxes. We have to point out, that momentum101

fluxes due to synoptic eddies are commonly considered as an interaction mechanism acting102

on atmospheric planetary scale barotropic flow (e.g., Luo (2005); Luo et al. (2007)), however103

to our knowledge not in the context of PGEs.104

The outline of this paper is as follows: in section 2 we briefly discuss the asymptotic105

method applied for the derivation of the two scale model. Key steps in the derivation are106

presented in section 3. The asymptotic model equations are summarized and discussed in107

section 4. We compare the results from the asymptotic analysis with numerical simulations108

with a primitive equations model in section 5. A concluding discussion can be found in109

section 6.110
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2. Asymptotic approach for the derivation of reduced111

models for the planetary and synoptic scales112

a. Asymptotic representation of the governing equations113

We utilize the multiple scales asymptotic method of Klein (2000, 2004, 2008). It has114

been applied in the development of reduced models, e.g., for the tropical dynamics (Majda115

and Klein 2003), deep mesoscale convection (Klein and Majda 2006), moist boundary layer116

dynamics (Owinoh et al. 2011) and concentrated atmospheric vortices (Päschke et al. 2012).117

Here we give a brief summary of the treatment of the governing equations for a compress-118

ible fluid with spherical geometry in the asymptotic framework (for the complete discussion119

we refer to DK). First, we nondimensionalize the equations by using as reference quantities:120

the thermodynamic pressure pref = 105 kg m−1 s−2, the air density ρref = 1.25 kgm−3 and121

a characteristic flow velocity uref = 10 ms−1. The above quantities define further the scale122

height hsc = pref/g/ρref ≈ 10 km (g = 9.81 m s−2 is the gravity acceleration) and its time123

scale tref = hsc/uref ≈ 20 min. We introduce a small parameter ε as the cubic root of124

atmosphere’s global aspect ratio125

ε =

(
a∗Ω2

g

) 1

3

, (1)

where a∗ ≈ 6 × 103 km is the earth’s radius and Ω ≈ 7 × 10−5 s−1 the earth’s rotation126

frequency. With these estimates we find ǫ ∼ 1/8 . . . 1/6, and henceforth consider asymptotic127

limits for ǫ ≪ 1. Next, the nondimensional Mach, Froude and Rossby numbers in the128

governing equations are expressed in terms of ε, which is referred to as a distinguished129

limit. The coupling of all characteristic numbers in terms of only one small parameter is130

motivated by the fact, that asymptotic expansions of simple systems (such as the linear131

damped oscillator) give non-unique results if multiple independent parameters are used.132

With the present specific coupling a variety of classical models can be rederived, see also133

Klein (2008) for further discussion of the distinguished limit. An alternative interpretation134
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of ε to the one in (1), is that ε equals the Rossby number for the synoptic scales (see Fig. 2135

for the synoptic length scaling). Introducing the distinguished limit, the nondimensional136

governing equations in spherical coordinates take the form137

d

dt
u − ε3

(
uv tan φ

R
−

uw

R

)

+ ε(w cos φ − v sin φ) = −
ε−1

Rρ cos φ

∂p

∂λ
+Su , (2)

d

dt
v + ε3

(
u2 tanφ

R
+

vw

R

)

+ εu sinφ = −
ε−1

Rρ

∂p

∂φ
+Sv , (3)

d

dt
w − ε3

(
u2

R
+

v2

R

)

− εu cosφ = −
ε−4

ρ

∂p

∂z
− ε−4+Sw , (4)

d

dt
θ =Sθ , (5)

d

dt
ρ +

ε3ρ

R cos φ

(
∂u

∂λ
+

∂vcosφ

∂φ

)

+ ρ
∂w

∂z
+

ε32wρ

R
=0 , (6)

ρθ =p
1

γ , (7)

where λ, φ and z stay for longitude, latitude and altitude. The nondimensional variables138

p, ρ and θ denote pressure, density and potential temperature; u, v and w are the zonal,139

meridional and vertical velocity components. Su,v,w and Sθ represent momentum and diabatic140

source terms,γ is the isentropic exponent and the operator d/dt is given by141

d

dt
=

∂

∂t
+

ε3u

R cos φ

∂

∂λ
+

ε3v

R

∂

∂φ
+ w

∂

∂z
, (8)

where R = a + ε3z (a order one constant). We want to stress that the reference quantities142

used for the non-dimensionalization, although valid vor a variety of flow regimes, might143

not be characteristic for the particular regime of interest, e.g., the scale height is not an144

appropriate horizontal scale for the description of planetary and synoptic scale atmospheric145

motions. Within the asymptotic approach a particular regime of interest can be studied, if146

rescaled coordinates together with an asymptotic series expansion of the dependent variables147

are introduced based on physical arguments and intuition. The scaling and the asymptotic148

expansion should reflect the relevant physical processes in the flow regime of interest.149
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b. Coordinates Scaling for the two scale Planetary Regime150

The coordinates resolving the planetary and synoptic time and spatial scales are sum-151

marized in Table 1. The planetary coordinates λP and φP are suitable for the description152

of horizontal variations of the order of the earth’s radius a∗. The corresponding planetary153

advective time scale is about 7 days and is resolved by tP . The synoptic scale variables154

λS, φS and tS describe motions with characteristic length scales of 1 000 km ∼ εa∗ and with155

a time scale of about 1 day. For the vertical coordinate z no scaling is required. Since this156

coordinate was nondimensionalized using the scale height hsc, it describes motions spreading157

through the full depth of the troposphere. A more detailed discussion of the scaling can be158

found in DK, the validity range of the two-scale Planetary Regime is sketched in Fig. 2.159

We assume that each dependent variable from (2) - (7) can be represented as an asymp-160

totic series in terms of ε161

U(λ, φ, z, t; ε) =
∞∑

i=0

εiU (i)(λP , φP , λS, φS, z, tP , tS) , (9)

where U = (u, v, w, θ, ρ, π). Note that the time and horizontal spatial coordinates of the162

individual terms in the series resolve both the planetary and synoptic scales.163

c. Sublinear growth condition164

In order to guarantee a well defined asymptotic expansion (9), we have to require that U (i)
165

grows slower than linearly in any of the synoptic coordinates. This requirement is known166

as the sublinear growth condition. Suppose, XS denotes one of the synoptic coordinates167

λS, φS, tS and XP the corresponding planetary coordinate λP , φP or tP . Since we have168

XS = XP /ε, we can formulate the sublinear growth condition for the coordinate XS as169

lim
ε→0

U (i)(. . . , XS)

XS + 1
= lim

ε→0

U (i)(. . . ,
XP

ε
)

XP

ε
+ 1

= 0 , (10)
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where all coordinates except XS are held fixed with respect to ε in the limit process. An170

immediate consequence from the last constraint is the disappearing of averages over XS of171

terms, which can be represented as derivatives with respect to XS. In particular we have172

∂

∂XS

U (i)

XS

= 0 . (11)

Here the averaging operator ()
XS

is defined as173

U (i)
XS

(. . .) = lim
ε→0

ε

2LS

XP
ε

+
LS
ε∫

XP
ε

−
LS
ε

U (i)(. . . , XS) dXS , (12)

where LS is some characteristic averaging scale for the coordinate XS. Eq. (11) implies174

that in the asymptotic analyses the synoptic scale divergence of a flux has no effect on the175

planetary scale dynamics, when the synoptic scale averaging (12) is applied. This follows176

directly from the sublinear growth condition (10) and we will make extensive use of it in the177

derivation of the reduced model equations.178

d. Assumptions for the background stratification179

As already mentioned the classical QG theory takes into account only small deviations180

from a constant background distribution of the potential temperature. This background181

is assumed to be horizontally uniform and is characterized by a Brunt-Väisälä frequency of182

O(10−2) s−1, which in nondimensional form implies a horizontally uniform O(ε2) background183

potential temperature (Majda and Klein 2003). Similarly as in DK, we allow here O(ε2)184

variations on the planetary scales of the background potential temperature distribution. In185

order to remain consistent with the assumptions in the QG theory we consider an order of186

magnitude smaller variations on the synoptic spatial and temporal scales, namely O(ε3).187

Thus the expansion for the potential temperature takes the form188

θ = 1 + ε2Θ(2)(λP , φP , z, tP ) + ε3Θ(3)(λP , φP , λS, φS, z, tP , tS) + O(ε4) . (13)

Next, we proceed with the asymptotic derivation of the reduced equations.189
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3. Derivation of the Planetary Regime with synoptic190

scale interactions191

a. Asymptotic expansion192

1) Notation193

From here on we use the following notation194

XS = (λS, φS, tS), XP = (λP , φP , tP ) (14)

f = sin φP , β =
1

a

∂

∂φp

sin φP , (15)

∇S,P =
eλ

a cos φP

∂

∂λS,P

+
eφ

a

∂

∂φS,P

, (16)

∆S,P =
1

a2 cos2 φP

(
∂2

∂λS,P
2 + cos φP

∂

∂φS,P

(

cos φP

∂

∂φS,P

))

, (17)

∇S,P · u =
1

a cos φP

(
∂u

∂λS,P

+
∂v cos φP

∂φS,P

)

, (18)

er · (∇S,P × u) =
1

a cos φP

(
∂v

∂λS,P

−
∂u cos φP

∂φS,P

)

, (19)

where u = eλu + eφv and eλ, eφ, er denote the unit vectors in spherical coordinates. Note195

that we do not need to make the traditional β-plane approximation for the Coriolis parameter196

f , since its full variations are resolved by the planetary scale coordinate φP .197

2) Key steps of the expansion198

We substitute the ansatz (9) in the governing equations (2) - (7) and collect terms of199

the same order in ε. Following DK we assume a radiative heating rate of about 1 K/day,200

this implies for the diabatic source term: Sθ ∼ O(ε5). The magnitude of the friction source201

terms is estimated as: Su,v ∼ O(ε2), if a relaxation time scale for the frictional effects of202

about 1 day is assumed. Source terms of this strength will induce leading order synoptic203

tendencies in the momentum equation.204
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(i) Vertical momentum balance205

The expansion of the vertical momentum equation shows that the pressure and the density206

are hydrostatically balanced up to O(ε4). If we make use of the ideal gas law (7) and of207

the Newtonian limit (which states that γ − 1 = O(ε) as ε → 0), we obtain from the208

leading two orders hydrostatic balance (see Klein and Majda (2006) and DK for details):209

p(0) = ρ(0) = exp(−z) and p(1) = ρ(1) = 0. The next two orders of hydrostatic balance can210

be expressed as211

O
(
ε2
)

: Θ(2) =
∂

∂z
π(2) , (20)

O
(
ε3
)

: Θ(3) =
∂

∂z
π(3) , (21)

where π(i) = p(i)/ρ(0).212

(ii) Horizontal momentum balance213

The leading order horizontal pressure variations on the planetary scale are described by214

π(2), consistent with the assumption (13) on Θ(2). Further, the leading order synoptic scale215

horizontal pressure fluctuations are assumed an order of ε smaller and are modeled by π(3).216

If we allow for a dependence of π(2) on the synoptic scales, the horizontal pressure gradient217

∇Sπ(2) will appear in the O(1) momentum equation. A pressure gradient of this strength218

must be balanced by a Coriolis force, which involves a velocity field scaled as ε−1uref (the219

leading order velocity u
(0) in the current asymptotic expansion (9) describes dimensional220

velocities of the order uref). Thus, the synoptic scale variations of π(2) imply unrealistic221

large synoptic scale velocities, such variations are inconsistent with the QG scaling and will222

not be considered here. With the consideration above, together with the result w(0) = 0223

from iii) below, we obtain that u
(0) is geostrophically balanced with respect to the pressure224

gradient on the synoptic (∇S) and on the planetary scale (∇P )225

O(ε) : fer × u
(0) = −∇Sπ(3) −∇P π(2) . (22)
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Since π(2) and f do not depend on the synoptic scales, (22) implies that the synoptic scale226

divergence of u
(0) disappears227

f∇S · u(0) = 0 . (23)

The evolution of the velocity field u
(0) on the synoptic time scale appears in the next order228

equation229

O(ε2) :
∂

∂tS
u

(0) + u
(0) · ∇Su

(0) + fer × u
(1) = −∇Sπ(4) −∇P π(3) + S

(2)
u

. (24)

As in the case of the single scale PR from DK we proceed in the asymptotic expansion up230

to the O(ε3) momentum equation231

O(ε3) :
∂

∂tS
u

(1) +
∂

∂tP
u

(0) + u
(0) · ∇Su

(1) + u
(1) · ∇Su

(0) (25)

+ u
(0) · ∇P u

(0) + w(3) ∂

∂z
u

(0) + fer × v
(2) − eλ

u(0)v(0) tanφP

a

+ eφ

u(0)u(0) tan φ

a
= −∇P π(4) +

ρ(2)

ρ(0)
∇P π(2) −∇Sπ(5) +

ρ(2)

ρ(0)
∇Sπ(3) + S

(3)
u

.

Comparing the last equation with the corresponding equation from DK, we note the addi-232

tional terms due to the synoptic scale variations, e.g., the synoptic scale tendency of u
(1)

233

(
∂

∂tS
u

(1)
)

or the synoptic scale advection of u
(1) by u

(0)
(
u

(0) · ∇Su
(1)
)
.234

(iii) Continuity equation235

The leading three orders in the mass conservation expansion give w(0) = w(1) = w(2) = 0236

(see DK for details). The O(ε3) order equation reads237

O(ε3) : ∇S · ρ(0)
u

(1) + ∇P · ρ(0)
u

(0) +
∂

∂z
ρ(0)w(3) = 0 . (26)

Here the synoptic scale divergence of u
(1) (interpreted in the classical QG theory as the238

divergence due to the ageostrophic velocities) appears in the same order as the planetary239

scale divergence of the leading order wind field u
(0). Making use of (23), the next two orders240
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in the continuity equation take the form241

O(ε4) : ∇S · ρ(0)
u

(2) + ∇P · u(1)ρ(0) +
∂

∂z
ρ(0)w(4) = 0 , (27)

O(ε5) :
∂

∂tS
ρ(3) + ∇S · u(0)ρ(3) + ∇S · u(1)ρ(2) + ∇S · u(3)ρ(0) (28)

+
∂

∂tP
ρ(2) + ∇P · u(0)ρ(2) + ∇P · u(2)ρ(0)

+
∂

∂z

(
ρ(0)w(5) + ρ(2)w(3)

)
= 0 .

(iv) Potential temperature equation242

From the expansion of the potential temperature equation we have243

O(ε5) :
∂

∂tS
Θ(3) + u

(0) · ∇SΘ(3) +
∂

∂tP
Θ(2) + u

(0) · ∇P Θ(2) (29)

+ w(3) ∂

∂z
Θ(2) = S

(5)
Θ .

It is worth to compare this result with the corresponding QG equation. In the latter theory244

Θ(2) is interpreted as a horizontally uniform background temperature distribution and all245

terms involving it, except the stratification term, are set to zero. Here we consider the246

variations on the planetary spatial and temporal scales of Θ(2) and their influence on the247

synoptic scale dynamics of Θ(3).248

b. Vorticity equation for the two scale PR249

In this section we proceed with a derivation of a vorticity equation for the two scale model.250

Applying − 1
a cos φP

∂
∂φS

cos φP to the eλ-component of (24) and 1
a cos φP

∂
∂λS

to the eφ-component251

of (24), we obtain252

∂

∂tS
ζ (0) + u

(0) · ∇Sζ (0) + f∇S · u(1)

=
1

a2 cos φP

∂

∂φS

∂

∂λP

π(3) −
1

a2 cos φP

∂

∂λS

∂

∂φP

π(3) + Sζ ,

(30)
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where253

ζ (0) = er · ∇S × u
(0) =

1

f
∆Sπ(3) , (31)

Sζ = er · ∇S × S
(2)
u

. (32)

With the help of (22) we can write for the planetary scale divergence of u
(0)

254

f∇P · u(0) = −
1

a2 cos φP

∂

∂φS

∂

∂λP

π(3) +
1

a2 cos φP

∂

∂λS

∂

∂φP

π(3) − βv(0) . (33)

Thus, the two scale vorticity equation reads255

∂

∂tS
ζ (0) + u

(0) · ∇Sζ (0) + f∇P · u(0) + f∇S · u(1) + βv(0) = Sζ . (34)

c. Averaging over the synoptic scales256

Eq. (34) is not closed since it contains the unknown velocity corrections u
(1). They257

can be eliminated in a way similar to that encountered in the classical QG theory, see also258

Pedlosky (1984). This leads to two scale PR model equations describing the planetary and259

the synoptic scale dynamics; the model is summarized in the next section. A key step in260

the derivation is to split all variables into a synoptic scale average and a deviation from this261

average. In the case of the variable π(3) we obtain262

π(3)(XS, XP , z) = π
(3)
P (XP , z) + π

(3)
S (XS, XP , z) , (35)

with263

π
(3)
P = π(3)

S

, (36)

π
(3)
S

S

= 0 , (37)

where the averaging operator ()
S

denotes averaging over the synoptic spatial and temporal264

scales. Consequently, we can write for the leading order horizontal wind265

u
(0) =

1

f
er ×∇Sπ

(3)
S

︸ ︷︷ ︸

=: u
(0)
S

+
1

f
er ×∇Pπ(2)

︸ ︷︷ ︸

=: u
(0)
P

. (38)
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Note that the synoptic scale wind field u
(0)
S is a function of the synoptic and planetary scales266

but the planetary scale wind field u
(0)
P of the planetary scales only and we have267

u
(0)
S

S

= 0 . (39)

The complete derivation of the two scale PR model is presented in appendix A and B.268

4. Summary and discussion of the two scale PR model269

Using a two scale asymptotic ansatz, we extended in a systematic way the region of270

validity of the planetary scale model from DK to the synoptic spatial and temporal scales.271

The model presented here relies on the assumption that the variations of the background272

stratification are comparable in magnitude with those adopted in the classical QG theory.273

The model equations are summarized below, for convenience of notation the superscripts274

indicating asymptotic expansion orders are dropped.275

1) Planetary scale model276

(
∂

∂tP
+ uP · ∇P + wP

∂

∂z

)
f

ρ0

∂Θ

∂z
= S ∂Θ

∂z
, (40)

∂

∂tP

(
∂

∂ỹP

1

f

∂

∂yP

P
z

−
β

f 2

∂

∂yP

P
z

− fP
z

)

−
∂

∂ỹP

N +
β

f
N = Sp , (41)

N =
∂

∂ỹP

ρ0

(

vP uP + vSuS

)S,λP ,z

−
tanφP

a
ρ0

(

vP uP + vSuS

)S,λP ,z

+
∂

∂z
P

∂

∂xP

P

ρ0

λP ,z

, (42)

uP =
1

fρ0
er ×∇P P ,

∂

∂z

P

ρ0
= Θ , ∇P · ρ0uP +

∂

∂z
ρ0wP = 0 . (43)

14



2) Synoptic scale model277

(
∂

∂tS
+
(

uS + uP

)

· ∇S

)

q + βvS +
f

ρ0
uS ·

∂

∂z

∇P ρ0Θ
∂Θ
∂z

= Sq , (44)

q =
1

f
∆S

p

ρ0
+

f

ρ0

∂

∂z

(

ρ0

∂Θ
∂z

∂

∂z

p

ρ0

)

, uS =
1

fρ0
er ×∇Sp . (45)

The underlined terms, discussed below in details, describe planetary-synoptic interactions278

and we have used the notation279

P = p(2) , p = p(3) , Θ = Θ(2) , ρ0 = ρ(0) , wp = w(3)
S

, (46)

∂

∂xP

=
1

a cos φP

∂

∂λP

,
∂

∂yP

=
1

a

∂

∂φP

,
∂

∂ỹP

=
1

a cos φP

∂

∂φP

cos φP . (47)

Equations (40)-(43) describe the planetary scale dynamics and (44)-(45) – the synoptic280

scale dynamics. The model equations include two advection equations (40), (44) for a PV281

type quantity and an evolution equation for the barotropic component of the background282

pressure (41), derived after applying the sublinear growth condition.283

If we leave the planetary scales dependence of the variables out, equations (40), (41)284

reduce trivially and the underlined terms in (44) vanish. In this case (44) is the classical PV285

equation from the QG theory. On the other hand, if we assume that the variables do not286

depend on the synoptic scales, the interaction terms in (41), (42) vanish and (40) remains287

unchanged: thus we have the single scale planetary model from DK.288

In the general case, when both synoptic and planetary scales are included, equations289

(40), (41) and (44) provide the planetary scale structure of Θ, P
z

and the synoptic scale290

structure of p. The variable Θ characterizes the background stratification. But whereas in291

the classical QG model a horizontally uniform stratification is assumed, here it is governed292

by the evolution equation (40). Another difference to the QG theory is that we do not utilize293

a β-plane approximation in the derivation of the synoptic scale model (44). In the last model294
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variation of the Coriolis parameter f (as well as β) on a planetary length scale are allowed.295

Equations (40) and (43) constitute the PGEs. As discussed in DK they do not represent a296

closed system, since a boundary condition for the surface pressure, or equivalently for the297

vertically averaged (barotropic component) pressure, is required. The latter is determined298

by the planetary barotropic vorticity equation (41). It is shown (see appendix B), that as299

in the single-scale PR the barotropic component of the background pressure P
z

is zonally300

symmetric. This is in accordance with the observational evidence that leading modes of301

atmospheric variability, i.e., the NAM and SAM, are zonally symmetric and barotropic.302

Thus, (41) has the potential to describe the dynamics of zonally symmetric low-frequency303

modes.304

The two underlined terms in (44) describe interactions between the planetary and the305

synoptic scales, or more precisely the influence of the planetary scale variations of the back-306

ground pressure/temperature distribution on the synoptic scale PV field. The first term can307

be interpreted as the advection of synoptic scale PV by the planetary scale velocity field, the308

second as the interaction of synoptic velocities with PV gradient afforded by the planetary309

scale field. It is important to note that the latter PV includes only a stretching vorticity310

part, since the contribution from the relative vorticity (due to planetary scale velocity field)311

is an order of magnitude smaller in the asymptotic analysis. We observe that the barotropic312

model of Luo (2005) contains such additional interaction term (see eq. (2b) in Luo (2005)).313

We speculate that this results from the fact that the latter author starts his asymptotic314

analysis from the equivalent barotropic vorticity equation, which itself is derived under the315

quasi-geostrophic scaling. We observe further, that the model for the synoptic dynamics (44)316

reduces to the model of Pedlosky (1984), if we set ρ0 to one and consider plane geometry.317

It is important to note that from the equations describing the planetary scale dynamics318

only eq. (41), but not eq. (40), contains a feedback from the synoptic scale (see the under-319

lined terms in (42)). We consider the first underlined term in (42), after applying the chain320

rule it will give rise in (41) to a term of the form ∂
∂ỹP

(vS(− ∂
∂ỹP

uS)). The latter term can321
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be interpreted as a planetary meridional gradient of a relative vorticity flux, where the vor-322

ticity results from the planetary scale dependence of uS. Such fluxes will directly affect the323

barotropic component of the background pressure. The background temperature Θ, on the324

other hand, will be influenced only indirectly by the synoptic scales through the barotropic325

part of the flow: changes in the background pressure imply changes in the planetary scale326

wind uP and hence the temperature advection in (40) will be affected. Such type of feedback327

mechanism from the synoptic to the planetary scale is absent in the Pedlosky (1984) model328

and differs from the one proposed by Grooms et al. (2011). The latter author shows that329

for some anisotropic regimes (requiring either an anisotropy in the large-scale spatial coor-330

dinates or anisotropy in the large- and small-scale velocity fields) the planetary scale motion331

can be influenced by the synoptic scale at leading order through eddy buoyancy fluxes. This332

does not contradict our results, since the barotropic component of the flow was ommited in333

the analysis of Grooms et al. (2011) and the PR is not characterized by an anisotropy. Fur-334

ther, we observe that eq.(41) does not contain vertical advection and twisting terms. This335

is in accordance with budget analysis of low-frequency life-cycle studies (Cai and van den336

Dool 1994; Feldstein 1998, 2002), which found that the corresponding terms are small and337

spatially incoherent. We note that terms multiplied by β in (41) result from the advection338

of planetary vorticity by the ageostrophic flow (see appendix B). This is consistent with the339

analysis of Cai and van den Dool (1994): they found that such an advection is important340

for the very longest low-frequency wave.341

5. Balances on the Planetary and Synoptic Scales in342

Numerical Experiments343

In this section we address the question how closely the reduced planetary-synoptic asymp-344

totic model captures the dynamics of a more complete fluid-dynamical model of the atmo-345

sphere. For that purpose we perform simulations with a model based on the primitive346
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equations (PEs). Since the PEs are derived from the full compressible flow equations by as-347

suming only a small aspect ratio of the vertical to horizontal length scale and the traditional348

approximation, these equations are much more comprehensive than the asymptotic model349

and apply to a wider range of scales. From the simulations with the PEs model we study the350

balances in the vorticity transport on the planetary and synoptic scale and compare them351

with the reduced asymptotic equations.352

a. Model description353

The numerical simulations are performed with the Portable University Model of the354

Atmosphere (PUMA; Fraedrich et al. 1998), which is a simplified global circulation model355

used for idealized experiments (e.g., Franzke 2002; Kleidon et al. 2003). It solves the PEs356

on a sphere for a dry ideal gas with diabatic and dissipation effects linearly parameterized357

through Newtonian cooling and Rayleigh friction (Held and Suarez 1994). The balance in358

the model vorticity transport can be written in pressure coordinates as359

∂

∂t
ζ + ∇ · u(ζ + f) + er · ∇ ×

(

ω
∂

∂p
u

)

+
ζ

τF

+ K(−1)h∇2hζ = R , (48)

where ζ denotes the relative vorticity, f the planetary vorticity, u the horizontal velocity360

vector, ω the vertical velocity and R the residuum due to errors in the interpolation of the361

fields from σ to pressure levels (the PUMA model equations use a σ-vertical coordinate).362

Further, we have the friction relaxation time scale τf and the hyperdiffusion coefficient K.363

All model variables are nondimensionalized using Ω and a∗.364

We performed simulations with realistic orography as well as with an aquaplanet as lower365

boundary condition. The model was run at a T21 horizontal resolution, with 10 vertical σ-366

levels and with a time step of 30 min. For the analysis an output over 11 years with 12 h367

time increment was used, the first one year is ignored so as to not mis-interpret any spin up368

effects. We used the default value of 70 K for the equator to pole temperature difference in369

the restoration temperature profile and the seasonal cycle in the model was switched off.370
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The inspection of the orography run shows that PUMA is able to produce key features371

of the atmospheric circulation reasonably well for a simplified atmospheric model. At mid-372

latitudes a pronounced wavenumber 6, 7 structure with a period of ca. 8 days is visible over373

most of the simulation time. This wave implies a characteristic length scale of ∼ 2000 km for374

the individual synoptic eddies, its time period is overestimated compared with the real at-375

mosphere where the maximum of the synoptic activity lies around 4 days (Fig. 1). The time376

mean 500 hPa geopotential height shows, that the model reproduces the trough over Eastern377

Asia, but it shifts the trough over Canada to Greenland. The weak trough over Western378

Asia is absent in the model but a weak minimum over the Aleutian islands is visible. In the379

real atmosphere the depression over these islands is confined to the lower troposphere only.380

An explanation of these discrepancies can be the absence of land-sea thermal forcing in the381

model.382

b. The two-scale PR in simulations383

In this subsection we analyze the magnitudes of the different terms in the PUMA vorticity384

equation and compare the leading order balances with the two scale PR model. Recall the385

leading two orders of the vorticity equation (see (23), (34)) in the PR model386

f∇S · u(0) = 0 , (49)

∂

∂tS
ζ (0) + u

(0) · ∇Sζ (0) + f∇P · u(0) + f∇S · u(1) + βv(0) = 0 . (50)

Here all frictional source terms are dropped, since we analyse PUMA simulations at vertical387

levels in the free atmosphere well above the planetary boundary layer. Next, the results388

for the balances in the PUMA vorticity transport on the synoptic and planetary scales are389

presented.390
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1) Synoptic scale dynamics391

The power spectral density of various terms in the model equation (48) as a function of392

zonal wavenumber and frequency is presented in Fig. 3 and 4. From the plots it is visible393

that the terms f ∂u

∂λ
, ∂ζ

∂t
and βv show two pronounced maxima. The first maxima is at zonal394

wavenumber k=6 (k=6,7 for f ∂u

∂λ
) and has a period around 8 d; the second maxima is at395

k=5 and period between 9 and 10 d. This structure resembles the two peaks associated with396

synoptic activity found in observational data, see Fig. 1. Further, in the power density of397

f ∂u

∂λ
and βv there is a hint of an isolated maximum at k=1,2 and frequency close to zero.398

This maximum results from quasi-stationary Rossby waves forced by orography, because it399

is absent in the aquaplanet simulation.400

In order to compare the magnitude of different terms in the vorticity balance on the401

synoptic scale, we computed the cumulative spectral density (sum over spectral density402

for some wavenumber/period interval) for zonal wavenumbers 4 ≤ k ≤ 8 and periods 7 d403

≤ T ≤ 10 d. The results for three different pressure levels are shown in Table 2. Overall,404

it can be stated, that first the terms f ∂u
∂λ

and f ∂v
∂φ

dominate and have similar magnitude.405

Second, if we add these terms together (see Table 2 and the plots for f∇·u in Fig. 3, 4), the406

resulting variations are one to two orders smaller than those of the individual terms, implying407

that they nearly balance. Both results are consistent with the leading order vorticity balance408

in the asymptotic analysis (49), which states that on the synoptic scales the leading order409

in the expansion for the wind is divergence free.410

The next order vorticity balance (50) from the PR suggests that terms including vor-411

ticity tendency, relative vorticity advection, planetary vorticity advection and horizontal412

divergence (multiplied by f) are next in importance in the vorticity transport. Indeed Ta-413

ble 2 shows that ∂ζ

∂t
, βv, u ∂ζ

∂λ
, v ∂ζ

∂φ
and f∇ · u are larger than terms involving advection414

by the vertical velocity ω or the dissipation term Ffr. However, the individual magnitudes415

of the first terms show variations within a wide range from 10−1 up to 10−3. Clearly, the416

dissipation term Ffr is even one order smaller and at 300 hPa and 500 hPa is comparable417
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with − ∂
∂φ

(ω ∂
∂p

u). This justifies the neglect of the nonconservative source term in (50). We418

observe further, that the ζ ∂u
∂λ

and ζ ∂v
∂φ

terms are comparable with v ∂ζ

∂φ
in magnitude. How-419

ever, if added together the first terms nearly balance similarly to the balance observed in420

f∇ · u.421

Table 3 shows that the spectral properties discussed so far are observed at different422

latitudes as well.423

2) Planetary scale dynamics424

As discussed in the previous subsection the vorticity equation (50) describes the leading425

order synoptic scale dynamics, however, this two-scale equation also takes into account426

planetary scale variations of the fields through the terms f∇P · u(0) and βv(0). Thus, (50)427

can be used to study the leading order vorticity balance on the planetary scale and the effect428

of the synoptic scales on that balance. We average (50) over the synoptic spatio-temporal429

scales in order to obtain the net influence on the planetary scale motions. The resulting430

equation reads431

∇P · fu(0)
S

= 0 , (51)

which states that for planetary scale motions the planetary vorticity flux vanishes. Further,432

in (51) there is no contribution from the synoptic scale vorticity fluxes. This is because of433

the the sublinear growth condition, which requires434

∇S · u(0)ζ (0)
S

= 0 . (52)

Note, that an effect due to synoptic eddy fluxes first appears in the next asymptotic order,435

cf. with the planetary barotropic vorticity equation (41). Equations (51) and (52) motivated436

us to study the divergence of the f - and ζ-flux in the PEs model. They suggest the following437

leading order balance on planetary spatial and temporal scales: i) the terms u ∂ζ

∂λ
, v ∂ζ

∂φ
, ζ ∂u

∂λ
438

and ζ ∂v
∂φ

sum to zero up to next order asymptotic corrections ii) the terms f ∂u
∂λ

, f ∂v
∂φ

and βv439
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sum to zero up to next order asymptotic corrections. Therefore, we consider the standard440

deviation of the terms ∇ · uζ and ∇ · uf in the PEs simulation relative to the standard441

deviation of the individual terms entering in the definitions of ∇ · uζ and ∇ · uf . In order442

to extract variations with particular zonal and meridional scale, we expand the data in443

spherical harmonics. Each harmonic has a total wavenumber n and zonal wavenumber k,444

the difference n− k defines the so-called meridional wavenumber and gives number of nodes445

from pole to pole. Thus, modes with small n and k (n ≥ k) describe variations on planetary446

spatial scales, in both zonal and meridional direction. On the other hand, if n, k or both447

become larger, the corresponding spherical harmonic will capture synoptic spatial scales as448

well.449

The top plots in Fig. 5 depict the normalized standard deviation of the spectral coeffi-450

cients for ∇ · uζ as a function of the total wavenumber n, where the normalization factor451

is given by the mean over the standard deviation of the terms: u ∂ζ

∂λ
, v ∂ζ

∂φ
, ζ ∂u

∂λ
and ζ ∂v

∂φ
.452

Thus, small values of normalized standard deviation indicate that the latter terms com-453

pensate. Clearly, this compensation is especially pronounced for total wavenumbers n ≤ 3454

at both pressure level. However, the transition between a regime with compensation and455

non-compensation is smooth.456

The averaging operator in (52) includes, in addition to a spatial averaging, an averaging457

over the synoptic time scales as well. Because of this we applied a low-pass filter to the data458

(Blackmon 1976), filtering out the synoptic time scales and all other time scales with periods459

smaller than 10 d. The results for the normalized standard deviation of ∇ · uζ are shown460

in the bottom plots of Fig. 5. The time filtering shifts the position of the maximum with461

roughly one total wavenumber to the left and reduces the standard deviation at higher n.462

However, for lower wavenumbers nearly no changes are observed compared to the unfiltered463

data, indicating that the large-scale spatial modes are dominated by long-period variations.464

From (51) we expect that the divergence of planetary vorticity flux vanishes on the465

planetary spatial scales. This balance differs from the leading order result on the synoptic466
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scale (49), which states that the divergence of the wind multiplied by f vanishes. The467

upper row plots in Fig. 6 display the normalized standard deviation of ∇ · fu and f∇ · u468

for different total wavenumbers n. The term ∇ · fu has similar distribution as the term469

∇ · uζ from Fig. 5: as n increases it increases monotonically up to a maximum and than470

declines, the smallest values correspond again to small n. The term f∇ · u has a different471

behavior: it decreases at the beginning until it saturates around some low, constant value.472

The saturation is reached around n = 5 and n = 6 for the 200 and 500 hPa pressure level,473

respectively. At this wavenumber the synoptic scale balance (49) is reached. From the graph474

of the ∇·fu-term appears that the balance on the planetary scale (51) is satisfied for n=1,2475

where the smallest values are reached and the curve is below the one for f∇ · u. As in the476

case of ∇·uζ , the transition between the planetary and synoptic regime in ∇·fu and f∇·u477

is smooth.478

The bottom plots in Fig. 6 show, that the application of a low-pass filter to the data479

does not change qualitatively the behavior of ∇ · fu and f∇ · u. The results reported in480

this section were also observed in an aquaplanet simulation.481

6. Conclusions and Outlook482

Using a two scale asymptotic ansatz, we extended in a systematic way the region of va-483

lidity of the planetary scale model from DK to the synoptic spatial and temporal scales. The484

resulting multi-scale model is summarized in eqs. (40)-(45). Already Mak (1991) incorpo-485

rated in the QG model spherical geometry by considering higher order terms, but his model486

is valid for motions characterized by length scales smaller than the planetary scale. The487

model presented here consists of two coupled parts – for the planetary and for the synoptic488

dynamics. This is different from the geostrophic potential vorticity model of Vallis (Vallis489

1996; Mundt et al. 1997), which consists of a single PV equation valid on the planetary490

and on the synoptic scale. The latter model is derived by choosing an appropriate scaling,491
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which allows both the limit for the QG model and the limit for the PGEs, whereas here we492

have applied a multi-scale asymptotic derivation. The two scale wave models of Luo (2005);493

Luo et al. (2007) assume a scale separation between planetary and synoptic motion only494

in zonal direction, here we considered a horizontally isotropic planetary scaling. A study495

with the asymptotic approach, as applied here, of anisotropic motions with planetary zonal496

scale, but meridionally confined to the synoptic scale, reveals a model which describes a497

coupling between the planetary evolution of the leading QG PV and the synoptic evolution498

of the first order PV corrections from the QG+1 model of Muraki et al. (1999) (details of499

this regime can be found in Dolaptchiev (2009)). The anisotropic multi-scale ocean model500

of Grooms et al. (2011) is another example for an anisotropic scaling of the large-scale co-501

ordinates (here the planetary coordinates): the meridional coordinate in this model resolves502

a planetary length scale, whereas the large-scale zonal coordinate resolves a scale between503

the planetary and the synoptic spatial scale. In the context of the atmosphere, the external504

Rossby deformation radius (Oboukhov scale) might be a natural choice for an intermediate505

large-scale length scale between the planetary and synoptic scale. Such scale is relevant for506

atmospheric blockings and within the present asymptotic approach it can be accessed in a507

systematic way.508

Equations (40) and (44) represent the anelastic analogon of Pedlosky’s two scale model509

for the large-scale oceanic circulation (Pedlosky 1984). In his study Pedlosky (1984) applied510

an asymptotic expansion in two small parameters: one is the Rossby number and the other is511

the ratio between the synoptic and the planetary length scale. For the derivation of his model512

he considered the case when the ratio between the two small parameters is of the order one.513

Expressing in terms of ε Pedlosky’s expansion parameters for our setup, it can be shown that514

their ratio is again one, which means that we have considered the same distinguished limit.515

The analysis of Pedlosky starts from the incompressible equations on a plane, here we study516

the compressible ones on a sphere. Nevertheless, the model PV transport equations have517

the same structure and are identical if we set ρ0 in (40), (44) to one and neglect the effects518
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due to the spherical geometry. A fundamental difference is the absence of a counterpart519

to the barotropic vorticity equation (41) in Pedlosky’s model. In the ocean the barotropic520

component of the planetary scale flow is determined, e.g., by prescribing the surface wind or521

by including some additional friction in the leading order momentum equation. This is not522

applicable to the atmosphere, since the surface winds should be a part of the solution and523

the frictional effects are much smaller than in the ocean.524

The additional evolution equation for the barotropic component of the flow (41) provides525

the only feedback from the synoptic scale processes to the planetary scale flow in the form of526

momentum fluxes. No such feedback is contained in Pedlosky’s model. This type of feedback527

mechanism on the planetary scale differs from the one recently proposed by Grooms et al.528

(2011), where the planetary scale motion is influenced by the synoptic scale through eddy529

buoyancy fluxes.530

One possible application of the two scale PR model presented here, is its implementation531

in the atmospheric module of an earth system model of intermediate complexity (EMIC532

Claussen et al. 2002). The CLIMBER EMIC (Petoukhov et al. 2000) solves a type of533

the PGEs (40), (43), but it uses a temperature based diagnostic closure for the barotropic534

component of the flow. Here (41) represents a prognostic alternative, which may provide for535

more realistic increased large-scale, low-frequency variability in future implementations.536

In EMICs the synoptic fluxes are often parameterized as a macroturbulent diffusion. In537

this context the model for the synoptic scale dynamics (44) can be regarded as a higher order538

closure. The solution of the additional evolution equation for the synoptic scales might be539

avoided by applying a stochastic mode reduction strategy (Majda et al. 2003; Franzke et al.540

2005; Franzke and Majda 2006; Dolaptchiev et al. 2012). Using this strategy one can derive541

stochastic differential equations for some “slow” variables taking into account in a systematic542

manner the interactions from the “fast” variables. In the case of the two scale PR model,543

we have a natural separation between fast (synoptic) and slow (planetary) modes. Thus544

one might apply a stochastic mode reduction procedure to the reduced two scale model545
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and derive a stochastic parameterization for the synoptic correlation terms in (41), which546

is consistent with the synoptic scale model (44). An alternative approach avoiding synoptic547

scale parameterization is followed by Luo (2005); Luo et al. (2007) in studies of blockings and548

NAO dynamics. The latter phenomena are considered as nonlinear initial value problems of549

planetary-synoptic interactions, this allows to assume a synoptic eddy forcing prior to the550

evolution of the planetary scale motion.551

The reduced barotropic vorticity equation has the potential to provide a diagnostic tool552

for studying planetary scale low-frequency dynamics in GCM or in observations. A number553

of studies (Cai and van den Dool 1994; Feldstein 1998, 2002; Franzke 2002) on the life-cycle554

of atmospheric low-frequency anomalies utilize budget analysis with the streamfunction ten-555

dency equation. In particular, with such an analysis the importance of different interaction556

terms, e.g., interactions with the time mean flow or high- and low-frequency transients, can557

be assessed systematically. In this context, the asymptotic analysis presented here stresses558

the importance of the barotropic, zonally symmetric component of the flow for the low-559

frequency dynamics. Further, it identifies terms containing zonally and vertically averaged560

synoptic scale momentum fluxes (or planetary meridional gradients of such fluxes) as rele-561

vant planetary-synoptic interactions. Those terms can be evaluated from observational data562

or GCM simulations and might be used as a diagnostic tool in interaction studies. Thus, the563

reduced planetary scale barotropic vorticity equation provides an alternative framework to564

apply a budget analysis, when the growth and decay of zonally symmetric anomalies with a565

planetary meridional scale, e.g., NAM and SAM, are investigated. Such model might give566

new insights in the interactions between the different spatial scales. Those spatial interac-567

tions are studied in the literature (Cai and van den Dool 1994; Feldstein 1998, 2002; Franzke568

2002) by splitting the flow into zonal average and its deviation, whereas in the present ap-569

proach the planetary and synoptic scales are associated with different ranges in wavenumber570

space. Another application of the present model is to use it as a data driven planetary scale571

model, in a way similar to Feldstein (2002). In such a model the synoptic fluxes are pre-572
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scribed from GCM simulation or observation and the effect on the planetary scale dynamics573

can be studied by solving the reduced model equations.574

The analysis from section 5 of numerical simulations with a primitive equations model575

showed that the leading order balances in the vorticity transport are consistent with the two576

scale asymptotic model. In particular, we find that for modes with planetary spatial scales577

(modes corresponding to spherical harmonics with a total wavenumber ≤ 2) the horizontal578

fluxes of relative and planetary vorticity are nearly divergence free. However, the transition579

between planetary and synoptic regime is smooth in the primitive equations model. The580

comparison between the numerical experiments and the asymptotic models can be extended581

in the present framework by considering the thermodynamic equation or higher order bal-582

ances on the planetary and synoptic scales. The asymptotic analysis revealed that some583

higher order terms involve corrections to the leading order wind. These corrections can be584

calculated from the model output by considering the divergent part of the wind.585

In future we plan to solve the two scale PR model numerically. This raises the question586

about the model behavior in the tropics where f tends to zero. If no frictional effects587

are considered, the geostrophically balanced leading order wind has a singularity at the588

equator. However, the asymptotic analysis of Majda and Klein (2003) showed that the589

background temperature field in the tropics is horizontally uniform (also known as the weak590

temperature gradient approximation). This condition on the temperature implies a vanishing591

pressure gradient which compensates the growth due to f . In the case of the two scale PR592

model further analysis is required, this model should be matched in a systematic way to the593

intraseasonal planetary equatorial synoptic scale model of Majda and Klein (2003).594
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APPENDIX A600

601

PV formulation of the two scale model602

Using (33) and the continuity equation (26), (30) can be expressed as603

∂

∂tS
ζ (0) + u

(0) · ∇Sζ (0) + βv(0) =
f

ρ(0)

∂

∂z
ρ(0)w(3) + Sζ . (A1)

Eliminating the vertical velocity with the help of (29), we have604

∂

∂tS
ζ (0) + u

(0) · ∇Sζ (0) + βv(0) =

−
f

ρ(0)

∂

∂z

ρ(0)

∂
∂z

Θ(2)

(
∂

∂tS
Θ(3) +

∂

∂tP
Θ(2) + u

(0) · ∇SΘ(3) + u
(0) · ∇P Θ(2)

)

+ Spv ,

(A2)

where we have denoted all source terms due to diabatic and frictional effects with Spv. In605

equation (A2) both the planetary and the synoptic scales are involved; we have reduced the606

unknown variables to two π(2)(XP , z) and π(3)(XS, XP , z), since u
(0), Θ(2), Θ(3) and ζ (0) can607

be expressed in terms of them, see (22), (20), (21) and (31). Next, we derive two separate608

equations for the unknowns, as usual in the multiple scales asymptotic techniques this is609

achieved by applying the sublinear growth condition (see also Pedlosky (1984)).610

Equation (A2) can be rewritten, with the terms depending on the planetary scales only611

appearing on the right hand side, as612

∂

∂tS
q(3) +

(

u
(0)
S + u

(0)
P

)

· ∇Sq(3) + βv
(0)
S +

f

ρ(0)
u

(0)
S ·

∂

∂z

∇P ρ(0)Θ(2)

∂Θ(2)/∂z

−Sq = −βv
(0)
P −

f

ρ(0)

∂

∂z

(
ρ(0)

∂Θ(2)∂z

(
∂

∂tP
Θ(2) + u

(0)
P · ∇P Θ(2)

))

+ S ∂Θ

∂z
,

(A3)

where613

q(3) =
1

f
∆Sπ(3) +

f

ρ(0)

∂

∂z

(
ρ(0)∂π(3)/∂z

∂Θ(2)/∂z

)

. (A4)
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In eq.(A3) S ∂Θ

∂z
represents the synoptic scale average of Spv and Sq the deviations from this614

average. The advection terms on the rhs of (A3) can be written as the divergence of a flux615

∂

∂tS
q(3) + ∇S ·

(

(u
(0)
S + u

(0)
P )q(3) +

βeλπ
(3)

f
−

ezπ
(3)

ρ(0)
×

∂

∂z

∇Pρ(0)Θ(2)

∂Θ(2)/∂z

)

−Sq = −βv
(0)
P −

f

ρ(0)

∂

∂z

(
ρ(0)

∂Θ(2)∂z

(
∂

∂tP
Θ(2) + u

(0)
P · ∇P Θ(2)

))

+ S ∂Θ

∂z
.

(A5)

The lhs of (A5) vanishes after averaging the equation over the synoptic scales and applying616

the sublinear growth condition, but the rhs remains unchanged (since it does not depend on617

the synoptic scales). Thus both sides of (A5) have to vanish independently and we obtain618

from the lhs619

∂

∂tS
q(3) +

(

u
(0)
S + u

(0)
P

)

· ∇Sq(3) + βv
(0)
S +

f

ρ(0)
u

(0)
S ·

∂

∂z

∇P ρ(0)Θ(2)

∂Θ(2)/∂z
= Sq . (A6)

The rhs of (A5) can be simplified further (see Dolaptchiev (2009) for the complete derivation)620

(
∂

∂tP
+ u

(0)
P · ∇P + wP

∂

∂z

)
f

ρ(0)

∂

∂z
Θ(2) = S ∂Θ

∂z
. (A7)

where w
(3)
P = w(3)

S

.621

APPENDIX B622

623

Evolution equation for the barotropic component of624

the pressure625

As discussed in DK, the planetary scale PV eq. (A7) requires a closure for the vertically626

averaged pressure p(2) (barotropic component). Here we derive an evolution equation for627

that component in the two scale setup form section 2b. In order to see the net effect from628

the synoptic scales on the planetary scale pressure distribution, we have to average first the629

asymptotic equations form section 3 over the synoptic variables.630
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a. Averaging over the synoptic scales631

(i) Continuity equation632

O(ε3) : ∇P · ρ(0)u(0)
S

+
∂

∂z
ρ(0)w(3)

S

= 0 , (B1)

O(ε4) : ∇P · ρ(0)u(1)
S

+
∂

∂z
ρ(0)w(4)

S

= 0 , (B2)

O(ε5) :
∂

∂tP
ρ(2) + ∇P · u(0)ρ(2)

S

+ ∇P · u(2)ρ(0)
S

(B3)

+
∂

∂z

(

ρ(0)w(5) + ρ(2)w(3)
S
)

= 0 .

We average vertically (B1), apply vanishing vertical velocity at the bottom and at the top633

of the domain as boundary condition and express the horizontal divergence with the help of634

eq. (33) to obtain635

β

f
ρ(0)v(0)

S,z

= 0 . (B4)

Consequently, the barotropic component of the pressure p(2) is zonally symmetric636

p(2)
z

= p(2)
z

(φP , tP ) . (B5)

(ii) Potential temperature equation637

Averaging over the potential temperature equation (29) and rewriting it in conservation638

form with the help of (B1), we have639

O(ε5) :
∂

∂tP
ρ(0)Θ(2) + ∇P · u(0)ρ(0)Θ(2)

S

+
∂

∂z
w(3)ρ(0)Θ(2)

S

= ρ(0)S
(5)
Θ

S

. (B6)
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(iii) Momentum equation640

The equation for the eλ-component of (25) is written with (26) in conservation form,641

after averaging the result over the synoptic scales we have642

O(ε3) :
∂

∂tP
ρ(0)u(0)

S

+ ∇P · u(0)ρ(0)u(0)
S

+
∂

∂z
w(3)ρ(0)u(0)

S

− fv(2)
S

(B7)

−
u(0)v(0) tan φP

S

a
= −

1

a cos φP

∂

∂λP

π(4)
S

+
ρ(2)

ρ(0)

1

a cos φP

∂

∂λP

π(2)
S

+ ρ(0)S
(3)
u

S

.

Here we have used the sublinear growth condition (11) and the fact that u
(0) · ∇Su(1) =643

∇S · u(0)u(1) because of (23).644

b. Derivation of the evolution equation for the planetary scale barotropic pressure645

We average the momentum eq. (B7), the temperature eq. (B6) and the continuity eq.646

(B3) over z and λP to obtain647

ρ(0)v(2) =
1

f

{
∂

∂tP
ρ(0)u(0) +

∂

∂ỹP

v(0)ρ(0)u(0) − ρ(0)u(0)v(0)
tan φP

a
− ρ(2)

∂

∂xP

π(2) + ρ(0)S
(3)
u

}

,

(B8)

∂

∂tP
ρ(0)Θ(2) +

∂

∂ỹP

v(0)ρ(0)Θ(2) = ρ(0)S
(5)
Θ ,

(B9)

∂

∂ỹP

ρ(0)v(2) = −
∂

∂tP
ρ(2) −

∂

∂ỹP

v(0)ρ(2)

(B10)

Here the overbar denotes an average over the synoptic scales, λP and z; ∂
∂xP

and ∂
∂ỹP

are648

defined in (47). The time derivative of ρ(2) in (B10) can be expressed with the help of (B9)649

in terms of p(2) only (see also eq.(73)-(77) from DK), thus we have650

∂

∂ỹP

ρ(0)v(2) = −
∂

∂tP
p(2) + ρ(0)S

(5)
Θ (B11)
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Substituting (B8) in (B11), we have651

∂

∂tP

(

−
∂

∂ỹP

u(0)ρ(0) +
β

f
u(0)ρ(0) − fp(2)

)

−
∂

∂ỹP

{

∂

∂ỹP

v(0)ρ(0)u(0) −
ρ(0)u(0)v(0) tanφP

a
− ρ(2)

∂

∂xP

π(2)

}

+
β

f

{

∂

∂ỹP

v(0)ρ(0)u(0) −
ρ(0)u(0)v(0) tan φP

a
− ρ(2)

∂

∂xP

π(2)

}

= Sp , (B12)

where Sp denotes the source terms entering the above equation. Finally, eq. (41) is obtained652

from (B12) after expressing the zonal wind u(0) entering the time derivative term in terms653

of the pressure p(2) using (38), (39) and (B5).654
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List of Tables755

1 Scaling for the planetary and synoptic coordinates 40756

2 Cumulative power spectral density for various terms in the vorticity equation757
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∂φ

761
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∂ cos φ

∂φ
, except for the operator in v ∂ζ

∂φ
. 41762

3 Same as in table 2 but for different latitudes, all results for 300 hPa pressure763

level. 42764
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Table 1. Scaling for the planetary and synoptic coordinates
Coordinates: synoptic planetary

horizontal λS = λ/ε λP = λ
φS = φ/ε φP = φ

temporal tS = ε2t tP = ε3t

40



Table 2. Cumulative power spectral density for various terms in the vorticity equation
(48) and at three different pressure levels. Shown is the sum over power density for zonal
wavenumbers 4 ≤ k ≤ 8 and periods 7 d ≤ T ≤ 10 d at 50°N in units of Ω4. The following
abbrevation is used: Ffr for the Rayleigh friction and hyperdiffusion terms ; ∂

∂λ
for the zonal

derivative 1
cos φ

∂
∂λ

and ∂
∂φ

for the meridional derivative 1
cos φ

∂ cos φ

∂φ
, except for the operator in

v ∂ζ

∂φ
.

200 hPa

f ∂u
∂λ

f ∂v
∂φ

f∇ · u ∂ζ

∂t
βv u ∂ζ

∂λ
v ∂ζ

∂φ

3.41e-01 3.54e-01 3.15e-02 1.46e-02 1.07e-02 1.86e-01 1.83e-03

ζ ∂u
∂λ

ζ ∂v
∂φ

ζ∇ · u ∂
∂λ

(ω ∂
∂p

v) − ∂
∂φ

(ω ∂
∂p

u) Ffr R

3.41e-03 3.39e-03 3.26e-04 2.45e-05 4.51e-05 1.90e-04 7.47e-05

300 hPa

f ∂u
∂λ

f ∂v
∂φ

f∇ · u ∂ζ

∂t
βv u ∂ζ

∂λ
v ∂ζ

∂φ

5.04e-01 5.46e-01 3.23e-02 2.25e-02 1.54e-02 2.27e-01 3.14e-03
ζ ∂u

∂λ
ζ ∂v

∂φ
ζ∇ · u ∂

∂λ
(ω ∂

∂p
v) − ∂

∂φ
(ω ∂

∂p
u) Ffr R

4.14e-03 4.32e-03 3.12e-04 5.51e-06 1.21e-04 3.24e-04 3.69e-05

500 hPa

f ∂u
∂λ

f ∂v
∂φ

f∇ · u ∂ζ

∂t
βv u ∂ζ

∂λ
v ∂ζ

∂φ

4.55e-01 5.07e-01 5.65e-03 2.40e-02 1.49e-02 1.23e-01 2.52e-03

ζ ∂u
∂λ

ζ ∂v
∂φ

ζ∇ · u ∂
∂λ

(ω ∂
∂p

v) − ∂
∂φ

(ω ∂
∂p

u) Ffr R

1.72e-03 1.87e-03 3.43e-05 1.02e-05 5.85e-04 3.45e-04 2.06e-05
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Table 3. Same as in table 2 but for different latitudes, all results for 300 hPa pressure level.
40°N

f ∂u
∂λ

f ∂v
∂φ

f∇ · u ∂ζ

∂t
βv u ∂ζ

∂λ
v ∂ζ

∂φ

4.13e-01 4.62e-01 3.31e-02 2.01e-02 1.60e-02 2.51e-01 4.91e-03

ζ ∂u
∂λ

ζ ∂v
∂φ

ζ∇ · u ∂
∂λ

(ω ∂
∂p

v) − ∂
∂φ

(ω ∂
∂p

u) Ffr R

2.21e-03 2.52e-03 1.62e-04 2.88e-06 1.35e-04 2.15e-04 2.54e-05

60°N
f ∂u

∂λ
f ∂v

∂φ
f∇ · u ∂ζ

∂t
βv u ∂ζ

∂λ
v ∂ζ

∂φ

7.31e-01 6.02e-01 1.87e-02 1.67e-02 7.70e-03 1.17e-01 3.05e-03

ζ ∂u
∂λ

ζ ∂v
∂φ

ζ∇ · u ∂
∂λ

(ω ∂
∂p

v) − ∂
∂φ

(ω ∂
∂p

u) Ffr R

2.96e-03 2.56e-03 9.47e-05 3.34e-06 4.00e-05 4.85e-04 1.36e-05
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List of Figures765

1 Power spectrum density of the meridional geostrophic wind at 500 hPa and766
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Used with permission). 44768
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. 46775
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5 Normalized standard deviation of ∇ · uζ at 200 hPa (a,c) and at 500 hPa777

(b,d) as a function of the total wavenumber n. (a),(b) unfiltered data, (c),(d)778
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The standard deviation of a term V for some n is given by Σn(V ) =
n∑

k=1

σk
n(V ),780

where σk
n(V ) denotes the standard deviation of the spectral coefficient of V781

for zonal wavenumber k and total wavenumber n. The normalization factor782

is 1
4
(Σn(u ∂ζ

∂λ
) + Σn(v ∂ζ

∂φ
) + Σn(ζ ∂u

∂λ
) + Σn(ζ ∂v

∂φ
)). 48783

6 Normalized standard deviation of f∇ · u and ∇ · fu at 200 hPa (a,c) and at784

500 hPa (b,d) as a function of the total wavenumber n. The normalization785

factor is 1
2
(Σn(f ∂u

∂λ
)+Σn(f ∂v

∂φ
)) and 1

3
(Σn(f ∂u

∂λ
)+Σn(f ∂v

∂φ
)+Σn(βv)) for f∇·u786

and ∇·fu, respectively. (a),(b) unfiltered data, (c),(d) low-pass filtered data.787

See the description below Fig. 5 for explanation of the normalization factors. 49788
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Fig. 1. Power spectrum density of the meridional geostrophic wind at 500 hPa and 50° N,
from Fraedrich and Böttger (1978)((c)American Meteorological Society. Used with permis-
sion).
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Fig. 2. Scale map of the two asymptotic regimes considered: the single-scale planetary
regime (PR) and the quasi-geostrophic (QG) regime. The two-scale PR model describes
both regimes. See section 2a for an explanation of the units and of the small parameter ε.
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Fig. 3. Zonal wavenumber - frequency plot of the power spectral density for different terms
in the model vorticity equation (48); all at 500 hPa and 50°N, all in units of Ω4. In the title
caption f ∂u

∂λ
stands for f 1

cos φ
∂u
∂λ

.
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Fig. 4. Same as in Fig. 3 but for a different wavenumber/frequency range.
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Fig. 5. Normalized standard deviation of ∇ · uζ at 200 hPa (a,c) and at 500 hPa (b,d)
as a function of the total wavenumber n. (a),(b) unfiltered data, (c),(d) low-pass filtered
data (periods ≥ 10 d, see Blackmon (1976) for filter details). The standard deviation of

a term V for some n is given by Σn(V ) =
n∑

k=1

σk
n(V ), where σk

n(V ) denotes the standard

deviation of the spectral coefficient of V for zonal wavenumber k and total wavenumber n.
The normalization factor is 1

4
(Σn(u ∂ζ

∂λ
) + Σn(v ∂ζ

∂φ
) + Σn(ζ ∂u

∂λ
) + Σn(ζ ∂v

∂φ
)).
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Fig. 6. Normalized standard deviation of f∇ · u and ∇ · fu at 200 hPa (a,c) and at 500
hPa (b,d) as a function of the total wavenumber n. The normalization factor is 1

2
(Σn(f ∂u

∂λ
)+

Σn(f ∂v
∂φ

)) and 1
3
(Σn(f ∂u

∂λ
) + Σn(f ∂v

∂φ
) + Σn(βv)) for f∇ · u and ∇ · fu, respectively. (a),(b)

unfiltered data, (c),(d) low-pass filtered data. See the description below Fig. 5 for explanation
of the normalization factors.
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