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ABSTRACT6

Durran’s pseudo-incompressible equations are integrated in a mass and momentum con-7

serving way with a new implicit turbulence model. This system is sound-proof, which has8

two major advantages over fully compressible systems: the CFL condition for stable time9

advancement is no longer dictated by the speed of sound and all waves in the model are10

clearly gravity waves (GW). Thus, the pseudo-incompressible equations are an ideal labora-11

tory model for studying GW generation, propagation and breaking. Gravity wave breaking12

creates turbulence which needs to be parameterised. For the first time the adaptive local13

deconvolution method (ALDM) for implicit large eddy simulation (ILES) is applied to non-14

Boussinesq stratified flows. ALDM provides a turbulence model that is fully merged with15

the discretisation of the flux function. In the context of non-Boussinesq stratified flows this16

poses some new numerical challenges, the solution of which we present in this text. In nu-17

merical test cases we show the agreement of the results with the literature (Robert’s hot/cold18

bubble test case), we present the sensitivity to the model’s resolution and discretisation and19

demonstrate qualitatively the behaviour of the implicit turbulence model for a 2D breaking20

gravity wave packet.21
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1. Introduction22

A main effect of acoustic waves in the atmosphere is a rapid adjustment to a balanced23

state with respect to pressure-density perturbations. As long as one is not interested in this24

adjustment process itself but rather in atmospheric dynamics on comparatively longer time25

scales, it is often attractive to filter acoustic waves from the dynamic equations. Thus simpli-26

fied, i.e. soundproof, equations enable a focus on the dynamics of more significant mesoscale27

processes, while the absence of fast waves also allows for larger time steps in numerical in-28

tegrations. A classical example is the Boussinesq system, where the prognostic continuity29

equation is replaced by a diagnostic divergence constraint on the wind field. This yields a30

good approximation of atmospheric dynamics on spatial scales smaller than the atmospheric31

scale height. Deep convection and wave propagation, however, experience effects of the verti-32

cal decrease of ambient density that cannot be reproduced in the Boussinesq approximation.33

This density effect causes, e. g. , gravity waves, typically generated in the troposphere, to34

grow in amplitude until they get unstable, break, and finally dissipate and interact with the35

large-scale flow in the middle atmosphere (Lindzen 1981; Fritts and Alexander 2003). To in-36

clude such effects, two more general approaches have been proposed. One is the well-known37

anelastic equations first introduced by Batchelor (1953) and Ogura and Phillips (1962), and38

further developed by Lipps and Hemler (1982) and Lipps (1990). They use a more gen-39

eral divergence constraint, which takes the decreasing background density into account as a40

weighting factor for the wind. A potential drawback of the anelastic system is that it requires41

the leading-order background atmosphere to be close to isentropic. Some indications exist42

that corresponding errors might often be negligible even for realistic tropospheric stratifi-43

cations (Smolarkiewicz and Dörnbrack 2008; Klein et al. 2010; Smolarkiewicz and Szmelter44

2011). However, an approach that does not constrain the background potential temperature45

as much as in the anelastic equations is offered by the pseudo-incompressible system (Dur-46

ran 1989; Durran and Arakawa 2007; Durran 2008). By introducing the so-called pseudo-47

incompressible density, the compressible coupling between pressure and density fluctuations48
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and thus the transfer from elastic potential to kinetic energy is cut off. Smolarkiewicz and49

Dörnbrack (2008) underlined that the Durran system retains the full momentum equation50

and, consequently, admits unabbreviated baroclinic production of vorticity, as also observed51

by Klein (2009a). Achatz et al. (2010) demonstrated a multi-scale asymptotic consistency52

between the pseudo-incompressible system and the compressible Euler equations to leading53

order, which cannot be observed for the anelastic system.54

The pseudo-incompressible equations are thus suitable for studying full scale gravity-55

wave dynamics from their generation until their breaking. In this problem the distances56

covered by waves of interest, both in the horizontal and in the vertical, are typically far too57

large to allow an explicit direct simulation of the generated turbulence. For its parameteri-58

zation an implicit large-eddy-simulation (ILES) method as developed by Adams et al. (2004)59

and Hickel et al. (2006, 2007) seems attractive. This so called adaptive local deconvolution60

method (ALDM) represents a merger of numerical method and SGS turbulence parame-61

terization. Instead of keeping numerical truncation errors small, which can be quite costly62

or unfeasible, and later dissipate the solution with an explicit turbulence model, numerical63

truncation is deliberately exploited and tuned to act as turbulence model. This holistic64

approach results in a particularly reliable and efficient method, while turbulence spectra65

are matched well. ALDM has been calibrated to be consistent with EDQNM spectral tur-66

bulence theory (Hickel et al. 2006). Indeed, comparisons with direct numerical simulation67

(DNS) data of turbulent flows showed better spectral behavior than standard turbulence68

models. ALDM was originally developed for incompressible flows (Hickel et al. 2006, 2007)69

and subsequently extended to fully compressible turbulence (Hickel 2011; Hickel and Larsson70

2008). Although its already wide-spread application in engineering applications (Klar et al.71

2011; Hickel et al. 2011) had been limited to the description of the effects of unstratified72

turbulence, recent results by Remmler and Hickel (2012a,b) demonstrate that the method73

can also be applied to stratified turbulence governed by the Boussinesq equations. Here we74

report the first application of ALDM to full-scale atmospheric flows beyond the Boussinesq75
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approximation.76

For this purpose a novel fully conservative discretization method for Durran’s pseudo-77

incompressible system has been developed, as previously achieved, to the best of our knowl-78

edge, only by Smolarkiewicz and Dörnbrack (2008) and Smolarkiewicz and Szmelter (2011).79

As the implicit turbulence model of ALDM is fully merged with the spatial discretization, an80

extension to another system of partial differential equations can be challenging. This paper81

shows how these challenges have been resolved within the framework of our newly devel-82

oped atmospheric flow solver pincFloit (Pseudo-INCompressible FLow solver with Implicit83

Turbulence model). We emphasize that many numerical issues discussed here, such as the84

convergence criterion for the pseudo-incompressible equations and a divergence correction85

for reducing the number of Poisson-solver iterations, are relevant to any kind of finite-volume86

method.87

The paper is organized as follows. In Sec. 1 we recall the pseudo-incompressible equa-88

tions and present them in a conservative and scaled form suitable for the discretization89

by a conservative finite-volume model. The general approach to the discretization is given90

in Sec. 2. Some special issues concerning pitfalls in the application of conservative finite91

volume methods to stratified fluids with the pseudo-incompressible divergence constraint92

are discussed in Sec. 3. Numerical test cases in Sec. 4 close the text, while Sec. 5 gives a93

summary and conclusions.94

a. Governing equations95

The pseudo-incompressible equations were first derived by Durran (1989). If we restrict96

ourselves to adiabatic non-rotating dynamics, then the Durran system in conservative flux97
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form reads98

(ρu)t +∇ · (ρuu) + 1

Ma2
1

κ
P̄∇π′ = − 1

Fr2
ρ′k +

1

Re
∇ · Π (1)99

ρt +∇ · (ρu) = 0 (2)100

∇ · (P̄u) = 0 , (3)101

with the Mach number Ma, the Froude number1 Fr and the Reynolds number Re, the velocity102

u = (u, v, w) with its zonal, meridional and vertical components, respectively, the potential103

temperature θ and the pseudo-incompressible (effective) density ρ. Further quantities are104

the Exner pressure105

π =

(
p

p0

)κ

(4)106

with κ = R/cp, where cp is the specific heat at constant pressure and R is the specific gas107

constant of air, a constant reference pressure p0 and the pressure p. Following the notation108

of Klein (2009b), we introduce P̄ defined by109

cpρθ =
1

κ
pκ0 p̄

1/γ =:
1

κ
P̄ (5)110

with the ratio of specific heats γ = cp/cV set to 1.4 in all our calculations. The pseudo-111

incompressible (effective) density is defined through the equation of state112

π̄ =

(
R

p0
ρθ

)γ−1

. (6)113

This effective density is only coupled to the potential temperature and no longer to the114

(total) Exner pressure, which was replaced by the background-state Exner pressure π̄ in115

the equation of state. Through this approximation the system of equations becomes sound116

proof. Since the background state – given by (ρ̄, θ̄, π̄) – satisfies the equation of state, the117

pseudo-incompressible (effective) density2 satisfies118

ρθ = ρ̄θ̄ . (7)119

1Please note that in the present paper the Froude number is defined as follows: Fr = uref/
√
glref with

reference velocity uref and reference length lref .
2In the following we only use the term ”density” but always refer to the pseudo-incompressible (effective)

density.

5



For better numerical accuracy and to avoid the well-balancing problem it is sensible to work120

with the fluctuation quantities for Exner pressure π′ = π − π̄(z) and potential temperature121

θ′ = θ − θ̄(z).122

The viscous stress tensor Π is given by123

Πij = η

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)

(8)124

with the Kronecker symbol δij and the dynamic shear viscosity coefficient η. The effect125

of volume viscosity is not considered. Note, that the viscosity term is responsible for the126

resolved grid scale dissipation and is part of the model even if an implicit LES is used since127

the latter treats the subgrid-scale dissipation.128

b. Transport of potential temperature129

Substituting the density of the thermodynamic relation (5) into the effective continuity130

equation (2) and using the divergence constraint (3) we obtain a thermodynamic equation131

for the transport of potential temperature132

(1/θ)t + u · ∇(1/θ) = 0 , (9)133

which is equivalent to D1/θ
Dt

= Dθ
Dt

= 0. This shows that without heat sources the potential134

temperature is simply advected with the flow. If we combine effective continuity equation (2)135

and transport of potential temperature (9) we obtain the relation136

(ρθ)t +∇ · (ρθu) = 0 (10)137

for the mass-weighted potential temperature. Using the divergence constraint 0 = ∇·(P̄u) =138

∇ · (ρ̄θ̄u) = ∇ · (ρθu) we see that ρθ is constant in time. Note that for diabatic flows a heat139

source enters the RHS of the divergence constraint and the transport equation of the potential140

temperature.141
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2. Discretisation with ILES142

We present the implicit LES proposed by Hickel (2011); Hickel et al. (2006, 2007)143

and Hickel and Larsson (2008) named adaptive local deconvolution method (ALDM). Origi-144

nally introduced for incompressible and fully compressible flows, we adopt the approach to145

the pseudo-incompressible equations. We present general ideas in the main part and put146

some of the more technical aspects into the appendix.147

a. General setup148

All variables are stored in a C-grid fashion. Fig. 1 shows a finite volume cell of the149

density with the velocities defined at the cell interfaces. Each momentum component150

has its own cell shifted with respect to the mass cell by half a cell in the corresponding151

direction. To calculate the fluxes across the cell surfaces, point values of velocity and scalars152

are reconstructed there. To denote the reconstructed value at the right wall of cell ijk we use153

the symbol φ̃R
i,j,k and the superscripts L, F,B, U,D for reconstruction to the left, forward,154

backward, upward and downward cell interface, respectively, please see also Fig. 2. The155

equations for these reconstructions terms are given in the appendix.156

b. Adaptive deconvolution (reconstruction)157

To obtain the values at the cell interface, ideas from numerical gas dynamics are borrowed158

and extended. In the weighted essentially non-oscillatory (WENO) method (Shu 1997) data159

within a cell is reconstructed using the cell-averages from neighbouring cells as depicted160

in Fig. 3 on the example of a fifth order WENO scheme with third order reconstruction161

polynomials. Note that the parabolas do not interpolate the data points since they are162

finite-volume cell averages and not finite-difference point values. At the cell interface xi+1/2163

three reconstructed values exist from the three stencils. In WENO the reconstructed values164

are averaged using solution adaptive weights. These weights are chosen in such a way that165
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the order of accuracy in smooth flows approaches the maximum for the given stencil width166

while unphysical oscillations are avoided by keeping the total variation in non-smooth regions167

bounded.168

ALDM differs from WENO in two ways. First, with ALDM the weights in the convex169

combination of the reconstruction polynomials are used to optimize the nonlinear spectral170

numerical dissipation that acts as an implicit SGS model rather than maximizing the formal171

order of accuracy. Second, in contrast to WENO, where polynomials of a certain degree172

n are used to obtain a convergence order 2n − 1, in ALDM first, second and third-order173

reconstructions are blended. The blending weights, again, are degrees of freedom that are174

used for SGS model tuning. For more details please see the appendix or Hickel et al. (2006,175

2007).176

c. Numerical flux function177

To calculate the update of a quantity in cell (i, j, k) we need to discretize the divergence178

operator, which is done in a conservative finite-volume way:179

∇ · F =
fi+1/2,j,k − fi−1/2,j,k

∆x
+

gi,j+1/2,k − gi,j−1/2,k

∆y
+

hi,j,k+1/2 − hi,j,k−1/2

∆z
, (11)180

where f, g and h indicate the fluxes in the three spatial directions as depicted in Fig. 4 for181

the flux of zonal momentum. The numerical flux function fi+1/2,j,k is the second ingredient182

of ALDM for ILES. It consists of a central term of high order and an artificial viscosity term.183

Mass and momentum have slightly different flux functions.184

1) Mass flux function185

For scalar transport it was shown in (Hickel et al. 2007) that the following flux function186

leads to an implicit SGS model that is consistent with turbulence theoretical constraints:187

f ρ
i+1/2,j,k =

ρ̃Ri,j,k + ρ̃Li+1,j,k

2
ui,j,k − σi+1/2,j,k(ρ̃

L
i+1,j,k − ρ̃Ri,j,k) , (12)188
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where189

σi+1/2,j,k = σC |ũR
i,j,k − ũL

i,j,k| . (13)190

The first part of the flux function leads to a high order central difference. Here it is impor-191

tant to work with the filtered (cell-centred, volume-averaged) velocity u, which satisfies the192

pseudo-incompressible divergence constraint. The second term is a dissipative term, with a193

diffusion coefficient given in (13), which itself depends on the roughness of the velocity field194

and a tuning parameter σC . In a smooth velocity field a density distribution is (almost)195

not diffused numerically with this SGS ansatz. Throughout our calculations we use for the196

tuning parameter197

σC = 0.615 (14)198

as proposed in (Hickel et al. 2007) for air.199

2) Momentum flux function200

The location of the fluxes on a C-grid is depicted in Fig. 4. To show the principle of201

the numerical flux function for the momentum we give the meridional transport of zonal202

momentum203

gρui,j+1/2,k = ρ̂i+1/2,j+1/2,k

{
1

4
(ũF

i,j,k + ũB
i,j+1,k)(ṽ

R
i,j,k + ṽLi+1,j,k)− σu

i,j+1/2,k(ũ
B
i,j+1,k − ũF

i,j,k)

}

,

(15)204

where205

σu

i,j+1/2,k = σu |ui,j,k − ui,j+1,k| . (16)206

At first we note that all quantities used in (15) are reconstructed to the forward interface207

centre of the momentum cell of ρui,j,k. The interpolation of the density ρ̂i+1/2,j+1/2,k is – at208

first glance – not unique but it can be constrained so as to make momentum and effective209

continuity equation consistent – an aspect discussed in Sec. 3 a. The first part of the flux210

function (15) is a central interpolation leading to a high-order central difference for the di-211

vergence operator. The second term is a numerical diffusion term that dissipates momentum212
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according to the magnitude of the second derivative of the reconstructed (deconvolved in213

LES terms) velocity ũ. The SGS dissipation coefficient σu

i,j+1/2,k given in (16) is proportional214

to the roughness of the volume-averaged (filtered in LES terms) velocity u. A list of all flux215

components can be found in the Appendix a. Also note that σu depends on the location216

if the grid is not uniform, i. e. with varying mesh size (Hickel et al. 2006). In pincFloit a217

uniform Cartesian mesh is used so that this parameter is a constant218

σu = 0.06891 . (17)219

3. Numerical Issues220

The implicit LES was devised for incompressible flows by Hickel et al. (2006) and for221

fully compressible flows by Hickel and Larsson (2008) and Hickel (2011). The application222

of ALDM to a model with atmospheric background stratification and a background density223

rapidly decaying in the vertical lead to a number of problems – the solution of which we224

discuss in this section.225

a. Flux function: Consistency between continuity and momentum equation226

So far we have not devised a rule how to interpolate the densities ρ̂ needed in the mo-227

mentum fluxes. We require that a pure density distribution with homogeneous background228

wind should solely advect the density while maintaining the constant background wind for229

all times. This goal can be achieved by assuring that effective continuity and momentum230

equation do – in this special setting – exactly the same, namely pure transport of mass. Note231

that inconsistent interpolation of ρ̂ leads to the appearance of artificial velocity fluctuations.232

For simplicity, we assume at first a constant wind in zonal direction. We list all assump-233

tions for the state at time t = tn:234

ρ = ρ(x, t), ui = u = const, v = w = 0, π = const .235
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The following discussion applies most directly to multistage time-stepping schemes, such as236

Runge-Kutta, which can be seen as a series of appropriately weighted forward Euler steps,237

here called predictor step. With only zonal transport of momentum the equation for velocity238

predictor u∗
i reads:239

ρn+1
i+1/2u

∗
i = ρni+1/2u

n
i −∆t

f ρu
i+1/2 − f ρu

i−1/2

∆x

= ρni+1/2u
n
i −

∆t

∆x

[
1

4
ρ̂ni+1(ũ

L
i+1 + ũR

i )
2 − 1

4
ρ̂ni (ũ

L
i + ũR

i−1)
2

]

.
240

For ease of reading we omitted the spatial indices j and k. The density at the zonal-velocity241

position is taken to be ρi+1/2 = (ρi + ρi+1) /2. Note that for constant u the correction term242

containing σ is absent. The position of density, velocity and fluxes can be seen in Fig. 5.243

We now enforce244

u∗
i = un

i = u ,245

i. e. no change of velocity in time, apply the assumption ui = u = const and obtain246

ρn+1
i+1/2 − ρni+1/2

∆t
u = − 1

∆x
(ρ̂ni+1u

2 − ρ̂ni u
2) (18)247

for the momentum equation. With the same assumptions, the continuity equation for cell i248

reads249

ρn+1
i − ρni
∆t

= −
f ρ
i+1/2 − f ρ

i−1/2

∆x

= − 1

∆x

[
ρ̃Ri + ρ̃Li+1

2
u− ρ̃Ri−1 + ρ̃Li

2
u

]250

and for cell i+ 1251

ρn+1
i+1 − ρni+1

∆t
= − 1

∆x

[
ρ̃Ri+1 + ρ̃Li+2

2
u− ρ̃Ri + ρ̃Li+1

2
u

]

.252

The arithmetic mean of both continuity equations yields253

ρn+1
i+1/2 − ρni+1/2

∆t
= − 1

∆x

[
ρ̃Ri+1 + ρ̃Li+2

4
u− ρ̃Ri−1 + ρ̃Li

4
u

]

. (19)254

Note that this arithmetic averaging agrees with the interpolation255

ρi+1/2,j,k =
1

2
(ρi,j,k + ρi+1,j,k) (20)256
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used to obtain the density for the momentum ρi+1/2,j,kui,j,k. We now require that momentum257

transport (18) and mass transport (19) are equal:258

ρ̂ni+1 − ρ̂ni =
ρ̃Ri+1 + ρ̃Li+2

4
− ρ̃Ri−1 + ρ̃Li

4
.259

The two differences are depicted in Fig. 6. It can easily be checked that this equality is260

obtained if the density ρ̂ is interpolated like261

ρ̂ni+1,j,k =
1

4
(ρ̃Ri,j,k + ρ̃Li+1,j,k + ρ̃Ri+1,j,k + ρ̃Li+2,j,k) , (21)262

where we have added the two missing indices j and k for completeness. This interpolation263

rule, which is the only possible solution of the form ρ̂ni+1 =
∑∞

j=−∞ aj ρ̃
R
i+j + bj ρ̃

L
i+1+j with264

a−∞ = b−∞ = a∞ = b∞ = 0, is illustrated in Fig. 7. This reasoning can be generalised to265

3D. A list of all interpolation rules can be found in the Appendix b.266

b. Temporal discretisation267

1) Choosing the time step268

PincFloit can be run with a fixed time step or with a variable time step chosen according269

to several stability criteria to obtain an efficient and stable numerical model. The stability270

criterion by Courant, Friedrichs and Levy limits the time step in proportion to the grid-point271

spacing but inversely proportional to the advecting wind speed. We thus choose the time272

step in the following way for our model273

dtCFL = νmin(
∆x

|umax|
,

∆y

|vmax|
,

∆z

|wmax|
) . (22)274

The CFL number ν is set to 0.9 in most of the calculations in conjunction with 3rd-order275

Runge-Kutta schemes.276

The CFL condition for a thermal bubble – initially at rest in a windless atmosphere –277

would allow an infinitely large first time step. Therefore the acceleration amust be considered278
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as well (Remmler 2010)279

1

2
|a|∆t2 + |u|∆t = ν∆x with ν ≤ 1 . (23)280

Solving for the positive root of ∆t leads to281

∆t = −|u|
|a| +

√

|u|2

|a|2
+

2ν∆x

|a| . (24)282

To avoid division by zero, we follow the algorithm – here in 1D: First obtain umax = max |u|283

and amax = max |a|, then calculate the time step according to the standard CFL condition284

∆tCFL = min(ν∆x/ |u| , ∆tmax) and if the speed up ∆u = amax∆tCFL is essential, i. e. if285

∆u > εumax with e. g. ε = 10−2, then compute286

∆tBuoy = −umax

amax
+

√

u2
max

a2max

+
2ν∆x

amax
. (25)287

We want to resolve the oscillations related to gravity waves (GW) in time. The highest288

possible GW frequency is the Brunt-Väisälä frequency N . A sensible time step limit is289

therefore given by ∆tGW = 1/N . For our standard GWP test case with an isothermal290

background of T = 300 K and N = 0.018s−1 we obtain a time step limitation due to gravity291

wave oscillations of ∆tGW = 55 s. The time step to be used by the scheme is the minimum292

of the time steps dictated by the various time step restrictions and a ∆tmax to avoid too293

large numerical errors.294

2) Low-Storage Runge-Kutta and Divergence Constraint295

We have implemented (among other time schemes) the low storage Runge-Kutta method296

of third order by Williamson (1980)297

q1 = ∆tF (φn), φ1 = φn + q1/3, (26)298

q2 = ∆tF (φ1)− 5q1/9, φ2 = φ1 + 15q2/16, (27)299

q3 = ∆tF (φ2)− 153q2/128, φn+1 = φ2 + 8q3/15. (28)300

301
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We derive the pressure correction procedure applied within each Runge-Kutta stage and302

show how this additional projection step changes the convergence properties of the overall303

scheme.304

Without heat source, the divergence constraint on the velocity305

∇ · P̄u = 0 (29)306

can be ensured by correcting the velocity field after the predictor step. Care has to be taken307

because this pressure correction has to be applied within each Runge-Kutta stage m. The308

equation for the tendency and the predictor of the momentum are given by:309

∆(ρu)∗i = ∆tFm −∆t
1

Ma2
1

κ
P̄
δπ′m

δxi
+ αm∆(ρu)mi (30)310

ρm+1u∗
i = (ρu)mi + βm∆(ρu)∗i (31)311

= (ρu)mi + βm∆tFm − βm∆t
1

Ma2
1

κ
P̄
δπ′m

δxi
+ βmαm∆(ρu)mi , (32)312

where ui denotes a velocity component and ρm+1 is known from the update of the effective313

continuity equation, FM comprises all fluxes, forces and sources except for the pressure314

gradient and αm, βm are the weights for the low-storage Runge-Kutta method by Williamson315

(1980). The old pressure π′m does not guarantee the divergence constraint on u∗. Therefore316

a new pressure π′m+1 is sought which ensures that the velocity um+1
i at the next Runge-Kutta317

stage satisfies (29)318

(ρu)m+1
i = · · · · · · · · · · · · · · · · · · · · · − βm∆t

1

Ma2
1

κ
P̄
δπ′m+1

δxi

· · · · · · · · · · · · · · · · · · . (33)319

Taking the difference between the last two equations (32) and (33) and applying the discrete320

divergence operator δ/δxi we obtain for the corrector procedure:321

ρm+1(u∗
i − um+1

i ) = βm∆t
1

Ma2
1

κ
P̄
δ(π′m+1 − π′m)

δxi
(34)322

Ma2κ
δ

δxi
P̄ u∗

i = βm∆t
δ

δxi

{
P̄ 2

ρm+1

δ

δxi
∆π′

}

−→ ∆π′ (35)323

π′m+1 = π′m +∆π′ (36)324

um+1
i = u∗

i − βm∆t
1

Ma2
1

κ

P̄

ρm+1

δ∆π′

δxi
,325
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where in the second line we sum over double indices giving the discrete divergence operator326

on the LHS and a Laplacian on the RHS.327

Equation (35) is a discrete Poisson equation for the pressure correction ∆π′ with the328

right hand side given as the residual divergence of the predicted velocity field u∗ weighted329

with P̄ . Note that the predicted tendency ∆u∗ must also be corrected because it is used in330

the following Runge Kutta stage, i. e. we have to supplement the equation331

∆um+1
i = ∆u∗

i +
δui

βm
(37)332

with δui = um+1
i − u∗

i . Alternatively to the correction of velocity, the momentum tendency333

could be corrected334

∆(ρu)m+1 = ∆(ρu)∗ + ρm+1 δu

βm
. (38)335

336

It is known, that a fractional step method deteriorates the temporal convergence order337

of the overall numerical scheme. To quantify this error we tested three third-order Runge338

Kutta schemes with the 1D gravity wave packet test case: the low-storage Runge Kutta339

by Williamson (1980) (LS-Will-RK3), a low-storage TVD Runge Kutta (LS-TVD-RK3) and340

a classical, non low-storage TVD Runge Kutta scheme (CL-TVD-RK3) (Gottlieb and Shu341

1998). The results are presented in Fig. 8. If the projection step is switched off all third-order342

schemes show the expected third-order convergence as ∆t → 0. If the projection is switched343

on the convergence drops down to first order as a simple forward Euler. Note, however, that344

the overall error of the third-order schemes is one order of magnitude smaller so that it pays345

off to work with the higher-order schemes.346

c. ALDM with background stratification347

It turned out that the turbulence model should not be applied to the full density but only348

to the perturbations. Otherwise the model would ”see” roughness in the background, which349

it would try to smooth out, i. e. it would try to establish a linear background profile. This can350
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also be seen on the equation level: since the divergence in the effective continuity equation (2)351

must be discretized with the ALDM flux function it cannot be consistent with the divergence352

constraint (3). We consider an unperturbed isentropic background, for simplicity, so that353

the divergence constraint becomes354

θ̄ = const ⇒ ∇ · (ρ̄θ̄u) = ∇ · (ρ̄u) = 0 (39)355

and the effective continuity equation with ρ = ρ̄ simplifies to356

ρt +∇ · (ρ̄u) = 0 ⇒ ρt = 0 . (40)357

The straightforward discretisation of (2) does not satisfy (40). The discrete divergence358

∇̂·(ρ̃u) = hk+1/2 − hk−1/2

∆z
(41)359

with360

hk+1/2 =
ρ̃Uk + ρ̃Dk+1

2
w̄k − regularization term (42)361

does not vanish because the background density has a non-trivial profile leading to recon-362

struction values that no longer satisfy the divergence constraint363

ρ̃ = ˜̄ρ(z) 6= ρ̄(z) ⇒ ∇̂·(ρ̃u) 6= 0 ⇒ ρt 6= 0 . (43)364

A simple way out is to split the total density into the background ρ̄ and a fluctuation part365

ρ′ and apply the reconstruction only to ρ′. The ILES damping term in the flux will only366

depend on ρ̃′, while the density in the convective term will be composed of background and367

reconstructed fluctuation:368

ρ = ρ̄+ ρ′ ⇒ ρ̃conv = ρ̄+ ρ̃′ and ρ̃ILES = ρ̃′ . (44)369

The flux in the above situation takes the form370

hk+1/2 =
ρ̄k + ρ̄k+1

2
w̄k − 0 = ρ̄k+1/2w̄k , (45)371
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which leads to372

∇̂·(ρ̃u) = ∇̂·(ρ̄u) = 0 ⇒ ρt = 0 . (46)373

Accordingly, the flux function (12) is replaced by374

f ρ
i+1/2,j,k =

(ρ̄i,j,k + ρ̃
′R
i,j,k) + (ρ̄i,j,k + ρ̃

′L
i+1,j,k)

2
ui,j,k − σi+1/2,j,k(ρ̃

′L
i+1,j,k − ρ̃

′R
i,j,k) . (47)375

In Fig. 9 the effect of introducing the fluctuation density is shown with isolines of potential376

temperature for the hot bubble test case at t = 20 min (see Sec. 4 for the set up). On377

the left the discretisation with the total density leads to oscillations in the solution, while378

the introduction of density fluctuation (right) produces a smooth solution. The small scale379

structures on the left are on the grid scale and are numerical artefacts. Especially the380

oscillations at the top of the domain are unphysical since the solution should remain smooth381

away from the bubble induced vortices. The smooth solution on the right compares well382

with other simulations of the test case in the literature, e. g. Robert (1993); Klein (2009a);383

Mendez-Nunez and Carroll (1994).384

A similar positive effect can be observed for the 1D gravity wave packet (see Sec. 4 for385

the set up) shown in Fig. 10. If the total density is reconstructed, severe oscillations appear386

in the solution (left). ALDM applied only to the density fluctuations leads to a smooth387

solution (right), which is the correct solution since the gravity wave should not break and388

produce turbulence in this regime.389

d. Solving the Poisson problem390

Throughout our calculations we use the BICGSTAB (Meister 1999) algorithm to solve391

the Poisson problem. A small parameter ε is introduced in the abort criterion, which will392

be discussed in Sec. 2.393
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1) Scaling of the Poisson equation394

If we solve the Poisson equation to satisfy ‖∇ · (P̄u)‖ ≤ ε, we obtain a height-dependent395

error in the velocity since ρ̄θ̄ depends exponentially on height. In Fig. 11 this is shown for a396

(initially) uniform, isothermal atmosphere at rest with a domain ranging up to zmax = 150 km397

with a Poisson solver tolerance of ε = 10−7 and a fixed time step of one second. One way398

out of this would be to tighten the tolerance – a very inefficient way. We consider a different399

approach: scaling of the Poisson equation. To see the necessity we analyse the problem400

by looking at the influence of the divergence error on the effective continuity equation and,401

consequently, via the momentum equation on the velocity field.402

The effective continuity equation ρt + ∇ · (ρu) = 0 with the density split as ρ = ρ̄ + ρ′403

reads404

ρ′t +∇ · (ρ̄u) +∇ · (ρ′u) = 0 . (48)405

The second term is related to the divergence constraint in the following way. Assuming a406

Poisson solver tolerance of ε and using P̄ = ρ̄θ̄, then407

‖∇ · (ρ̄θ̄u)‖ ∼ ‖θ̄∇ · (ρ̄u)‖+ ‖ρ̄u · ∇θ̄‖ ∼ ε (49)408

and consequently409

‖∇ · (ρ̄u)‖ ∼ ‖1
θ̄
∇ · (ρ̄θ̄u)
︸ ︷︷ ︸

∼ε

‖ − ‖ρ̄u · ∇ ln θ̄‖ . (50)410

The divergence error in the density therefore has the following height dependency, assuming411

the second term of the RHS of (50) to be negligible in this order estimate,412

‖ρ′div error‖ ∼ 1

‖θ̄‖ε . (51)413
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An error in the density leads to a buoyant acceleration in the vertical momentum equation414

‖(ρw′)t‖ ∼ ‖ρ′div errorg‖ (52)415

‖(ρ̄w′)t‖ ∼ ‖ρ′div errorg‖ assuming ‖ρ′div error‖ ≪ ‖ρ̄‖ (53)416

‖w′
t‖ ∼ ‖ρ

′
div error

ρ̄
g‖ (54)417

‖w′
t‖ ∼ ε

‖ρ̄θ̄‖g , (55)418

419

where we used relation (51) for the last step. Now it is obvious that the velocity perturbation420

w′ created due to the divergence error is height dependent and will grow exponentially like421

(ρ̄θ̄)−1.422

To obtain height-independency for w′ we see from (54) that the divergence error in the423

density should scale as424

425

‖ρ′div error‖ ∼ ‖ρ̄‖ε . (56)426

Then the divergence error in the effective continuity equation, i. e. first term of the RHS427

of (50), should satisfy428

‖1
θ̄
∇ · (ρ̄θ̄u)‖ ∼ ‖ρ̄‖ε , (57)429

which is equivalent to the following scaling of the divergence constraint430

‖ 1

ρ̄θ̄
∇ · (ρ̄θ̄u)‖ ∼ ε . (58)431

If we apply this pressure scaling (ρ̄θ̄ = P̄ ) while keeping the Poisson solver tolerance at432

ε = 10−7 we obtain the results presented in Fig. 12. With the same computational effort433

velocity and potential temperature perturbations were reduced by four orders of magnitude.434

Note, for the anelastic divergence constraint a scaling with ρ̄ would be in order.435

2) Physical convergence criterion436

Smolarkiewicz et al. (1997) discussed stopping criteria for the iterative solution of the437

Poisson problem in the context of the Boussinesq system. Their main argument is a physical438
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one: an iteration should be stopped, if the relative density change ∆ρ/ρ due to the divergence439

error within one time step ∆t is smaller than some ε. A convergence to machine precision440

would be a waste of time since other discretisation errors are then orders of magnitudes441

larger.442

Here we discuss it in the context of the pseudo-incompressible system. From (48) and (50)443

we recall that the divergence constraint enters the effective continuity equation in the form444

ρt +
1

θ̄
∇ · (ρ̄θ̄u)− . . . = 0 . (59)445

The density change due to the divergence error in one time step is446

∆ρdiv error

∆t
∼ 1

θ̄
∇ · (ρ̄θ̄u) (60)447

and the relative change with respect to the background density is448

∆ρdiv error

ρ̄
∼ ∆t

1

ρ̄θ̄
∇ · (ρ̄θ̄u) . (61)449

To ensure that the relative change of density is small throughout the computational domain450

a sensible abort criterion is451

‖∆t
1

ρ̄θ̄
∇ · (ρ̄θ̄u)‖∞ ≤ ε . (62)452

Note that the scaling of the divergence is consistent with the scaling we introduced in the sec-453

tion above. This is because we also assume in both cases that density errors are proportional454

to the background density.455

3) Correcting the divergence error456

Smolarkiewicz and Margolin (1994) showed that there can be an enormous difference457

between the Eulerian and the semi-Lagrangian approach: the flux-form formulation needs458

a much smaller Poisson solver tolerance ε in the iterative elliptic solver to avoid unphysical459

solutions than the advective formulation3. This leads to a higher number of iterations and460

3It is also shown that this problem can be circumvented by transporting only the perturbation of the

potential temperature instead of the full quantity.
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increase in computing time. In our model we also observed this inefficiency of the Poisson461

solver and propose the following remedy, which, on the one hand, violates the conservation462

property of the effective continuity equation. On the other hand this error is of the order of463

the Poisson solver tolerance and is therefore acceptable – depending on the application.464

To understand the modification let us write once more the effective continuity equation465

ρt +∇ · (ρu) = 0 in a different form466

ρt +
1

θ̄
∇ · (ρ̄θ̄u)
︸ ︷︷ ︸

O(ε)

−ρ̄u
∇θ̄

θ̄
+∇ · (ρ′u) = 0 (63)467

so that the term containing the divergence error becomes visible. If the tolerance ε is very468

small the term can be neglected in all other cases it has a (unphysical) effect. To overcome469

this discrepancy, we simply subtract this term from the equation, which is the same as adding470

it as a source term in the effective continuity equation:471

ρt +∇ · (ρu) = 1

θ̄
∇ · (ρ̄θ̄u) . (64)472

In the following we study the effect of the proposed ”divergence error correction” for the473

1D gravity wave packet, which is a very sensitive test case. In Fig. 13 the 1D gravity474

wave packet described in Sec. 4 is shown. If the effective continuity equation is not changed475

(left column) we can see that for a Poisson solver tolerance of ε = 10−5 (top) the scheme476

is not even stable and for ε = 10−7 (bottom) there are oscillations in the higher altitude477

regions. In contrast, the introduction of the source term in the effective continuity equation478

stabilises the scheme and produces correct results for tolerances as low as ε = 10−5. In479

table 1 we see how the average number of iterations per call to BICGSTAB4, is reduced by480

introducing the divergence error correction. The reason for this behaviour is clear: if the481

error is not produced in the effective continuity equation, no unphysical dynamic is induced482

in the momentum equation – and an initially unperturbed, divergence-constraint satisfying483

state maintains this divergence constraint. Note that for ε ≤ 10−8 the divergence error484

4Note that each iteration within BICGSTAB has two calls of the linear operator.
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correction has no influence any more. Also note that in some instances BICGSTAB is not485

called at all leading to average numbers smaller than 1.486

4. Test Case Results487

a. Hot bubble test case488

For the hot bubble test case described by Mendez-Nunez and Carroll (1994) we assume489

a neutrally stratified atmosphere with θ00 = 300 K. The initial perturbation by the hot490

thermal is given by491

∆θ = ∆θ0 cos
2(
πr

2
) for r ≤ 1 (65)492

with the radial distance given by493

r2 =

(
x− xc

r0

)2

+

(
z − zc
r0

)2

. (66)494

The radius is set to r0 = 2.5 km and the initial height is zc = 2.75 km. The bubble is placed495

horizontally in the middle of the domain. This test case was chosen to demonstrate the496

importance of transporting only the density perturbation instead of the full density, see Fig. 9497

and the discussion in Sec. 3 c. The test shows interfacial instabilities as already reported498

in Grabowski and Clark (1991) for a thermal with moist physics and a high resolution (direct499

simulation) approach.500

We now consider a variant of the hot bubble test case with a more realistic atmosphere.501

The troposphere is assumed isentropic with θtr = 300 K, the tropopause is set at ztr =502

12 km and the stratosphere is assumed isothermal with a constant temperature given by the503

temperature at the tropopause504

Ttr = θtr

(
ptr
p0

)R/cp

, (67)505

with the pressure at the tropopause506

ptr = p0
(
1− gztr

cpθtr

)cp/R
. (68)507
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The potential temperature profile in the stratosphere is given by508

θ̄(z) = θtr exp

[
g

cpTtr
(z − ztr

]

. (69)509

The result of the simulation with the implicit turbulence model at a resolution of 100 ×510

100 at 20 minutes model time is shown in Fig. 14. Depicted are the isolines of potential511

temperature perturbation θ′ = θ − θ̄ ranging from −3.2 K to 2.2 K in steps of 0.5 K.512

Positive perturbations are marked with a ”+” and negative perturbations with a ”−”. As for513

a convective cell in moist atmosphere, the tropopause acts as a natural border for the vertical514

movement of the hot bubble and its spreading looks similar to experiments with a solid wall515

at z = ztr. Nevertheless, the updraft produced by the hot bubble induces perturbations at516

the tropopause, which travel as gravity waves into the stratosphere. Wave crests and troughs517

are visible in 14 as elliptic isolines with positive and negative values of potential temperature.518

b. Bubble test case by Robert519

Robert (1993) discussed the test case of two colliding bubbles: a large hot bubble with520

a small cold bubble placed horizontally off-centred above. The background is an isentropic521

atmosphere with θ̄ = 300 K. Both bubbles have the following structure522

∆θ =







∆θ0, r ≤ r0

∆θ0e
−(r−r0)2/σ2

, r > r0

(70)523

with524

r2 = (x− x0)
2 + (z − z0)

2 . (71)525

The warm bubble has the data ∆θ0 = 0.5 K, r0 = 150 m, σ = 50 m and is positioned at526

x0 = 500 m, z0 = 300 m. The smaller cold bubble has the data ∆θ0 = −0.15 K, r0 =527

0 m, σ = 50 m and is positioned at x0 = 560 m, z0 = 640 m. The domain spans528

[−500 m, 500 m] × [0, 1000 m]. No-slip boundary conditions are applied at all four walls529

of the domain. The CFL number is set to 0.9 leading to a time step of 3.0 seconds for530
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100 × 100 and 1.5 seconds for the 200 × 200 resolution. An interesting aspect is the531

existence of two scales introduced by the large and small bubble and the fact that the532

cold bubble is horizontally ”off-centred”, which creates a highly unsymmetric solution. In533

Fig. 15 we compare the isolines of density perturbation ρ′ = ρ− ρ̄ after 10 minutes for two534

resolutions: 100 × 100 on the left column and 200 × 200 on the right. The solution for the535

Euler equations with an upwind scheme by Robert is presented in the top line of the figure,536

while the solution with pincFloit – i. e. for the pseudo-incompressible equations with ALDM537

as implicit turbulence model – is shown in the bottom line. The resemblance of the solutions538

is remarkable. A major difference is the vortex at the lower right corner: pincFloit produces539

more structure in this flow region. As it turns out this structure is also obtained with an540

upwind scheme (pincFloit with MUSCL as flux solver) for a higher resolution (400 × 400).541

This implies that ALDM has less numerical dissipation than standard (second-order) upwind542

schemes at a comparable resolution.543

A variant of Robert’s test case with a uniform horizontal background wind u0 = 1.67 m s−1
544

is shown in Fig. 16 with a resolution of 200×200. The velocity is set so that the bubbles fully545

traverse the periodic domain within 10 minutes. The plotted levels for the isolines of density546

perturbation ρ′ = ρ − ρ̄ are the same for the experiment without background wind (left547

column) and with uniform background wind (right column). The results with and without548

wind are not identical but very close to each other. The small deviation can be attributed to549

numerical truncation errors, which are different if the fluid system is shifted along the grid550

and exponentially grow in time due to the non-linear transport processes.551

c. 1D Gravity Wave Packet552

On an isothermal reference state with T00 = 300 K a wave packet is superimposed with553

the initial buoyancy amplitude554

b̂(x, z) = a
N2

m0
exp

[
(z − zc)

2

2σ2

]
√

ρ(0)

ρ(z)
(72)555
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with the vertical wave number m0 = 2π/λz,0 and the normalised amplitude a = 0.1, the556

isothermal Brunt-Väisälä frequency for T00 = 300 K of N = 0.018 s−1, the half-width557

σ = 5 km and the centre of the wave packet at zc = 30 km. Using the polarisation relations558

we set the following initial fields559

ut=0 =
m0

k0

ω̂

N2
b̂ cos(k0x+m0z −

π

2
) (73)560

wt=0 =
ω̂

N2
b̂ cos(k0x+m0z +

π

2
) (74)561

bt=0 = b̂ cos(k0x+m0z) (75)562

πt=0 =
m0

k2
0

ω̂2

N2

1

cpθ0(z)
b̂ cos(k0x+m0z −

π

2
) . (76)563

For the wave lengths we set λx = λz = 1 km defining the initial wave number k0 = (k0, m0)564

and the intrinsic frequency ω̂ = −Nk0/‖k0‖. The domain of the full model has the size565

(lx, lz) = (1 km, 60 km) at a resolution of nx×nz = 64×3840. In both test cases the domain566

is periodic in the horizontal and has a no-slip solid wall boundary condition at the bottom567

and top. A sponge layer at the top can be switched on to avoid spurious reflections of the568

gravity wave packet.569

In (Rieper et al. 2012) the extended, weakly nonlinear WKB theory by Achatz et al.570

(2010) is verified, i. e. a WKB model and a full model5 are compared with respect to the571

predictions of the WKB theory. Here we recall the major results in short: there is very good572

agreement for the propagation of wave 1 (initial wave number k0). The full model shows a573

wave 2 (wave number 2k0) oscillating about a smoothly increasing amplitude predicted by574

the WKB theory. For smaller λ, i. e. for smaller ε in the multi-scale asymptotic ansatz, these575

oscillations vanish. Higher harmonics should not be induced within the orders of magnitude576

considered in the WKB theory (Achatz et al. 2010) and the full model only produces higher577

harmonics of a distinctly smaller order of magnitude.578

In this text we analyse the behaviour of full and WKB model with respect to numerical579

5Since the flow remains laminar in the analysed test case in that paper no turbulence model was needed

and – without loss of generality – a MUSCL scheme was used.
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issues: influence of resolution, flux function, Poisson solver tolerance and the divergence580

error correction introduced in Sec. 3. Throughout these calculations we used a fixed (small)581

time step ∆t = 1.0 s in order to fully resolve the buoyancy oscillations. The corresponding582

CFL numbers depend on the chosen resolution and are stated at due place.583

In Fig. 17 it is shown how the various harmonics evolve in time in the full model and584

according to the WKB theory depending on the spatial resolution. Shown are the amplitude585

maxima of buoyancy for the wave numbers αk0 with α = 2, 3, 4 and 5. The resolution nλ586

is given with respect to the number of points per wave length of the initial wave with k0.587

The time step of one second leads to a CFL number of 1/60 for the high resolution case and588

1/120 for the low resolution case. For the coarse resolution with nλ = 16 – corresponding589

to a domain resolution of nx × nz = 16× 960 – the wave 2 amplitude falls behind the WKB590

predicted value. On the other hand the higher harmonics (α > 2), which should be absent591

according to WKB, are of comparable magnitude as wave 2. Obviously, a poor resolution592

leads to a feed-in of energy from wave 2 to the higher harmonics. If the resolution is doubled593

(right of Fig. 17) the higher harmonics are clearly of a smaller order of magnitude. If the594

resolution is doubled again (not shown here) the higher harmonics practically vanish and595

the WKB predictions are well met. Note that the wave 1 amplitude of the full model (also596

not shown) always agrees very well with the WKB prediction.597

At the resolution nλ = 32 the influence of the flux function (not shown here) is only598

marginal. We compare three different flux functions: central difference scheme (CDS),599

MUSCL and ALDM produce a second harmonic of comparable magnitude. This ampli-600

tude is smoothly varying for MUSCL and ALDM but shows a rough evolution for CDS.601

The differences appear in the higher harmonics. CDS practically does not produce any602

higher harmonics. MUSCL has very small oscillations in the odd harmonics of O(1%) of the603

second harmonic, while ALDM has O(10%)-oscillations in the third harmonic and O(1%)-604

oscillations in the harmonics higher than 3 for a Poisson-solver tolerance of ε = 10−9.605

The tolerance of the Poisson solver also influences the spectrum of the solution as can606
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be seen in Fig. 18. At a tolerance of ε = 10−5 the full model produces spurious amplitudes607

in the higher harmonics, α > 1. Only for small tolerances ε < 10−6 do these harmonics608

disappear. Note that wave 1 (not shown here) is in good agreement to the WKB predictions609

for tolerances as large as ε = 10−5. These calculations were done at a high resolution of610

nλ = 64 with a fixed time step of one second and a corresponding CFL number of 1/30.611

The tolerance of the Poisson solver can be relaxed if the divergence-error correction as612

described in Sec. 3 is applied. If it is switched off we obtain the result shown in Fig. 19. The613

higher harmonics do not agree with WKB predictions in contrast to the results shown on614

the right side of Fig. 18 with the divergence-error correction switched on. Obviously, even615

wave 1 (left) is completely wrong, see Fig. 19 left. These calculations were also done with616

nλ = 64, a fixed time step of one second and a corresponding CFL number of 1/30.617

d. Breaking of a 2D gravity wave packet618

With this test we evaluate how the implicit turbulence model handles the breaking of619

a gravity-wave packet and how the induced turbulence is modelled qualitatively. Since this620

text focuses on numerical aspects we do not analyse the turbulence characteristics, which621

is part of future work. The wave packet is initialised as described in Sec. 4 albeit with622

an amplitude having a Gaussian profile in two spatial directions with the initial buoyancy623

amplitude given by624

b̂(x, z) = a
N2

m
exp

[
(z − zCenter)

2 + (x− xCenter)
2

2σ2

]

(77)625

with the wave lengths λx = λz = 4 km and a normalised amplitude factor of a = 0.9. The626

domain is 80 km×80 km and resolved with nx×nz = 640×640. The time step was fixed to627

one second leading to a CFL number of 1/6. The background is isothermal with T00 = 300 K.628

In Fig. 20 the isolines of the total potential temperature θ = θ̄ + θ′ are shown at the initial629

state (top left), after 10 minutes (top right) and in according order after 20, 30, 40 and 50630

minutes. Already after 10 minutes the steepening of the gradients becomes visible. The first631
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overturning of the gravity waves occurs after about 40 minutes. In this text we do not give632

an analysis of the turbulence modelling but we can see - at least - that the solution remains633

smooth and physical, grid scale oscillations are avoided by the scheme.634

5. Summary and conlusions635

We have presented a conservative way of discretising Durran’s pseudo-incompressible636

equations, which was – to the best of our knowledge – until now only done by Smolarkiewicz637

and Dörnbrack (2008) and by Smolarkiewicz and Szmelter (2011) on unstructured meshes.638

New is the implementation of a turbulence model right into the numerical flux function. The639

adaptive local deconvolution method (ALDM) by Hickel (2011); Hickel et al. (2006, 2007)640

and Hickel and Larsson (2008) is for the first time used in the context of non-Boussinesq641

flows with a stratified background.642

We analyse numerical difficulties and propose ways around them.643

• To avoid spurious oscillations and to avoid the activation of the turbulence model on644

an unperturbed atmosphere, ALDM must only be applied to the deviation ρ′ = ρ− ρ̄645

from the background.646

• The physically motivated abort criterion proposed by Smolarkiewicz et al. (1997) for647

solving the elliptic Helmholtz equation in the context of the Euler equation is adapted648

to the pseudo-incompressible system.649

• To avoid oscillations in a uniform atmosphere at high altitude the Poisson equation650

has to be scaled with ρ̄θ̄. This causes a height-independent divergence error in the651

velocity field allowing to reduce the Poisson solver tolerance to acceptable values with652

respect to the overall computational effort.653

• A correction term in the effective continuity equation allows to reduce the number654

of iterations of the Poisson solver even more. It reduces the effect of the residual655
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divergence error present in the velocity field after the projection step.656

Note that these methods are applicable to any kind of finite-volume method and are not657

restricted to the ALDM discretisation. Also note that the implicit turbulence scheme can be658

switched off. The resulting high order central difference scheme could then be combined with659

an explicit turbulence model for testing and comparing purposes. In both cases – implicit660

and explicit – the modelling introduces unresolved subgrid-scale dissipation. The resolved661

dissipation on the grid scale is done by the discretisation of the viscous stress tensor. Note662

that this does not lead to ”double counting” since turbulence model and physical viscosity663

act on different scales.664

With the hot/cold bubble test case by Robert (1993) we validate the code for convective665

problems. The similarity between the solutions shows two things:666

• Euler and Durran’s equation produce similar results if applied to convective problems.667

• Upwind schemes and ALDM produce similar results if applied to well resolved laminar668

flows and ALDM has less numerical dissipation on coarse grids.669

• The solution only weakly depends on a uniform mean background wind.670

With the hot bubble test case by Mendez-Nunez and Carroll (1994) we demonstrate the671

relevance of applying ALDM only to the density perturbations and the capability of the672

model to cope with convection in the presence of a stratified background.673

The 1D gravity wave packet (GWP) test case is used to demonstrate the influence of674

the numerics on the spectral development of a GWP. We compare the results with those675

predicted by the extended WKB theory (Achatz et al. 2010).676

• If the resolution is too low, higher harmonics are excited – which is not of physical but677

only of numerical origin.678

• The tolerance of the Poisson solver has a direct impact on the spectrum especially on679

the higher harmonics.680
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• The introduction of a divergence error correction improves the quality of the spectrum681

for lower tolerance of the Poisson solver.682

In a 2D GWP breaking test case we visualise how the ALDM turbulence model keeps a683

smooth solution without creating unphysical oscillations on the grid scale. Since this text684

focuses on numerical issues we do not go further into analysing the turbulence characteristics685

which is planned for future work.686

As turbulence in real GW breaking events is a three-dimensional phenomenon, it remains687

open to show how a 3D GWP breaks and how the ALDM scheme behaves in such a more688

physical 3D context. Since calculations in 3D are time consuming this part of the research689

has to be postponed until a parallel version of pincFloit is available.690

So far the model is restricted to the dry atmosphere. We plan to include moist processes691

in order to be able to study the interaction between gravity waves and clouds. With the692

implicit turbulence scheme the moist quantities would be transported as a passive tracer, an693

application for which ALDM has already been tested (Hickel et al. 2007). The latent heat694

term appears on the right hand side of the divergence constraint.695
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APPENDIX700

701

Momentum flux functions and corresponding density702

interpolations703

a. Momentum fluxes704

The momentum fluxes read705

706

f ρu
i+1/2,j,k = ρ̂i+1,j,k

{
1

4
(ũR

i,j,k + ũL
i+1,j,k)

2 − σu |ui,j,k − ui+1,j,k| (ũL
i+1,j,k − ũR

i,j,k)

}

(A1)707

gρui,j+1/2,k = ρ̂i+1/2,j+1/2,k

{
1

4
(ũF

i,j,k + ũB
i,j+1,k)(ṽ

R
i,j,k + ṽLi+1,j,k)− σu |ui,j,k − ui,j+1,k| (ũB

i,j+1,k − ũF
i,j,k)

}

(A2)

708

hρu
i,j,k+1/2 = ρ̂i+1/2,j,k+1/2

{
1

4
(ũU

i,j,k + ũD
i,j,k+1)(w̃

R
i,j,k + w̃L

i+1,j,k)− σu |ui,j,k − ui,j,k+1| (ũD
i,j,k+1 − ũU

i,j,k)

}

(A3)

709

710

711

f ρv
i+1/2,j,k = ρ̂i+1/2,j+1/2,k

{
1

4
(ṽRi,j,k + ṽLi+1,j,k)(ũ

F
i,j,k + ũB

i,j+1,k)− σu |vi,j,k − vi+1,j,k| (ṽLi+1,j,k − ṽRi,j,k)

}

(A4)

712

gρvi,j+1/2,k = ρ̂i,j+1,k

{
1

4
(ṽFi,j,k + ṽBi,j+1,k)

2 − σu |vi,j,k − vi,j+1,k| (ṽBi,j+1,k − ṽFi,j,k)

}

(A5)713

hρv
i,j,k+1/2 = ρ̂i,j+1/2,k+1/2

{
1

4
(ṽUi,j,k + ṽDi,j,k+1)(w̃

F
i,j,k + w̃B

i,j+1,k)− σu |vi,j,k − vi,j,k+1| (ṽDi,j,k+1 − ṽUi,j,k)

}

(A6)

714

715
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716

f ρw
i+1/2,j,k = ρ̂i+1/2,j,k+1/2

{
1

4
(w̃R

i,j,k + w̃L
i+1,j,k)(ũ

U
i,j,k + ũD

i,j,k+1)− σu |wi,j,k − wi+1,j,k| (w̃L
i+1,j,k − w̃R

i,j,k)

}

(A7)

717

gρwi,j+1/2,k = ρ̂i,j+1/2,k+1/2

{
1

4
(w̃F

i,j,k + w̃B
i,j+1,k)(ṽ

U
i,j,k + ṽDi,j,k+1)− σu |wi,j,k − wi,j+1,k| (w̃B

i,j+1,k − w̃F
i,j,k)

}

(A8)

718

hρw
i,j,k+1/2 = ρ̂i,j,k+1

{
1

4
(w̃U

i,j,k + w̃D
i,j,k+1)

2 − σu |wi,j,k − wi,j,k+1| (w̃D
i,j,k+1 − w̃U

i,j,k)

}

(A9)719
720

b. Density interpolation721

For a consistent discretisation of continuity and momentum equation the density for the722

momentum flux must be interpolated according to the following equations:723

724

f ρu
i+1/2,j,k : ρ̂ni+1,j,k =

1

4
(ρ̃Ri,j,k + ρ̃Li+1,j,k + ρ̃Ri+1,j,k + ρ̃Li+2,j,k) (A10)725

gρui,j+1/2,k : ρ̂i+1/2,j+1/2,k =
1

4
(ρ̃Fi+1,j,k + ρ̃Bi+1,j+1,k + ρ̃Fi,j,k + ρ̃Bi,j+1,k) (A11)726

hρu
i,j,k+1/2 : ρ̂i+1/2,j,k+1/2 =

1

4
(ρ̃Ui,j,k + ρ̃Di,j,k+1 + ρ̃Ui+1,j,k + ρ̃Di+1,j,k+1) (A12)727

728

729

f ρv
i+1/2,j,k : ρ̂ni+1/2,j+1/2,k =

1

4
(ρ̃Ri,j,k + ρ̃Li+1,j+1,k + ρ̃Ri,j+1,k + ρ̃Li+1,j+1,k) (A13)730

gρvi,j+1/2,k : ρ̂ni,j+1,k =
1

4
(ρ̃Fi,j,k + ρ̃Bi,j+1,k + ρ̃Fi,j+1,k + ρ̃Bi,j+2,k) (A14)731

hρv
i,j,k+1/2 : ρ̂i,j+1/2,k+1/2 =

1

4
(ρ̃Ui,j,k + ρ̃Di,j,k+1 + ρ̃Ui,j+1,k + ρ̃Di,j+1,k+1) (A15)732

733

734

f ρw
i+1/2,j,k : ρ̂i+1/2,j,k+1/2 =

1

4
(ρ̃Ri,j,k + ρ̃Li+1,j,k + ρ̃Ri,j,k+1 + ρ̃Li+1,j,k+1) (A16)735

gρwi,j+1/2,k : ρ̂i,j+1/2,k+1/2 =
1

4
(ρ̃Fi,j,k + ρ̃Bi,j+1,k + ρ̃Fi,j,k+1 + ρ̃Bi,j+1,k+1) (A17)736

hρw
i,j,k+1/2 : ρ̂ni,j,k+1 =

1

4
(ρ̃Ui,j,k + ρ̃Di,j,k+1 + ρ̃Ui,j,k+1 + ρ̃Di,j,k+2) (A18)737

738
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739

Reconstruction procedure740

What follows is a presentation of the reconstruction procedure. More theoretical back-741

ground can be found in (Hickel 2008) and the references therein. We make use of the following742

indices:743

k = 1, 2, 3 degree of polynomial: constant, linear and quadratic reconstruction

r = 0, . . . , k − 1 shift of polynomial, 0 = right most stencil

l = 0, . . . , k − 1 specifier index for cell centered variable

λ = −1
2
,+1

2
target position of reconstruction: left or right

The value φ̃ at the cell interface is the weighted sum over a reconstructed variable φ̌, which744

in turn is calculated from the cell-averaged6 value φ̄:745

φ̌k,r(xi+λ) =

k−1∑

l=0

αλ
k,r,lφ̄i−r+l (A19)746

To give an example: The value φ̌3,2(xi+1/2) is the value reconstructed in cell i at the right747

cell face (λ = 1/2), with a quadratic polynomial (k = 3) with the left-most stencil (r = 2)748

consisting of φ̄i−2, φ̄i−1 and φ̄i and the corresponding weights α
1

2

3,2,l with l = 0, 1, 2. In general749

the weights of the filtered values are given by (Hickel et al. 2006)750

αλ
k,r,l(xi) = ∆x

k∑

m=l+1

k∑

p=0
p 6=m

k∏

n=0
n 6=p,m

xi+λ − xi−r+n− 1

2

k∏

n=0
n 6=m

xi−r+m− 1

2

− xi−r+n− 1

2

751

6Note that the bar symbolises cell-averaged or filtered value in the appendix and not atmospheric back-

ground value as in the main text.
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c. Constant reconstruction: k=1752

With k = 1 we have reconstruction with a constant function as depicted in Fig. 21. The753

indices can assume the following values754

r = 0, l = 0, λ = ±1

2
755

and the weights for all reconstruction points xi−1/2, xi+0 and xi+1/2 are given by756

αλ
1,0,0 = 1 for λ = ±1

2
.757

The interpolated values at these points are, as expected of course,758

φ̌k=1,r=0(xi−1/2) = φ̄i ,759

φ̌k=1,r=0(xi) = φ̄i ,760

φ̌k=1,r=0(xi+1/2) = φ̄i .761

762

d. Linear reconstruction: k=2763

The linear reconstruction is depicted in Fig. 22. With k = 2 the remaining coefficients764

take the values765

r = 0, 1 l = 0, 1 λ = −1

2
,+

1

2
.766

With some algebra we obtain767

αλ
2,0,1 = λ ,768

αλ
2,0,0 = αλ

2,1,1 = 1 + λ ,769

αλ
2,1,0 = −λ .770

771

The interpolated values for the right stencil is given by772

φ̌k=2,r=0(xi+λ) =

1∑

l=0

αλ
2,0,lφ̄i+l = (1− λ)φ̄i + λφ̄i+1 , for λ = −1

2
,+

1

2
773
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and for the left stencil by774

φ̌k=2,r=1(xi+λ) =

1∑

l=0

αλ
2,1,lφ̄i−1+l = −λφ̄i−1 + (1 + λ)φ̄i , for λ = −1

2
,+

1

2
775

e. Quadratic reconstruction: k = 3776

The quadratic reconstruction is depicted in Fig. 3. Note that the obtained functions do777

not interpolate the filtered values φ̄ but the reconstructed point values. The reason therefore778

is that the cell averaged values φ̄ are related to the antiderivative of φ and not to the function779

itself. The weights for the filtered values are given in the following tableau for λ = ±1/2780

αλ
3,0,0 =

1

2
λ2 − 3

2
λ+

23

24
→ 11

6
,
1

3
781

αλ
3,0,1 = −λ2 + 2λ+

1

12
→ −7

6
,
5

6
782

αλ
3,0,2 =

1

2
λ2 − 1

2
λ− 1

24
→ 1

3
,−1

6
783

784

αλ
3,1,0 =

1

2
λ2 − 1

2
λ− 1

24
→ 1

3
,−1

6
785

αλ
3,1,1 = −λ2 +

13

12
→ 5

6
,
5

6
786

αλ
3,1,2 =

1

2
λ2 +

1

2
λ− 1

24
→ −1

6
,
1

3
787

788

αλ
3,2,0 =

1

2
λ2 +

1

2
λ− 1

24
→ −1

6
,
1

3
789

αλ
3,2,1 = −λ2 − 2λ+

1

12
→ 5

6
,−7

6
790

αλ
3,2,2 =

1

2
λ2 +

3

2
λ +

23

24
→ 1

3
,
11

6
791

792

f. Blending of 1st, 2nd and 3rd-order interpolants793

In essentially non-oscillatory (ENO) schemes, a definite polynomial degree k for the794

interpolant functions is chosen, which determines the spatial order of the scheme. A stencil-795
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selection algorithm then chooses a stencil r in such a way, as to avoid reconstruction across796

discontinuities. Contrary to this, weighted essentially non-oscillatory (WENO) schemes use797

all stencils r = 0, . . . , k − 1 of degree k, where the interpolants across discontinuities receive798

smaller weights than smooth regions, thus keeping oscillations low.799

The implicit turbulence model developed by Hickel and Adam makes explicit use of800

the numerical truncation associated with the reconstruction by polynomials of all degrees,801

k = 1, 2 to 3. Thus we sum over all stencils r = 0, . . . , k − 1 and all polynomial degrees802

k = 1, 2, 3 to obtain the reconstructed variables at cell faces (λ = ±1
2
):803

φ̃λ(xi+λ) =
3∑

k=1

k−1∑

r=0

ωλ
k,r(φ̄, xi) φ̌k,r(xi+λ) ,804

where φ̌k,r(xi+λ) are the reconstructed values obtained by Equation (A19). The weights805

ωλ
k,r(φ̄, xi) can be chosen to obtain a classical WENO scheme of order 2K − 1, where K is806

the degree of polynomials used. In ALDM the weights are tuned to represent subgrid-scale807

turbulence via the truncation error of the various orders of reconstruction. They are defined808

like809

ωλ
k,r(φ̄, xi) =

1

K

γλ
k,rβk,r(φ̄, xi)

k−1∑

s=0

γλ
k,sβk,s(φ̄, xi)

. (A20)810

Note that all polynomial degrees enter the equation with the same weight811

k−1∑

r=0

ωλ
k,r =

1

K
.812

The γ’s are tuning parameters and the β’s are smoothness indicators given by813

βk,r(φ̄, xi) =

(

εβ +
k−r−2∑

l=−r

(φ̄i+l+1 − φ̄i+l)
2

)−2

, (A21)814

which are different from their WENO counterparts. The parameter εβ = 10−10 avoids815

devision by 0 in smooth or non-varying regions. We calculate the smoothness indicator for816

the various instances of k and r.817
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g. Properties of the γ’s818

The properties of the 18 parameters γ are given in Hickel (2008) leading to a reduction819

of the numbers of free parameters down to 4, named here c1 to c4. We summarize820

k = 1 γ
−1/2
1,0 = c2 γ

+1/2
1,0 = c2821

k = 2 γ
−1/2
2,0 = 1− c2 γ

+1/2
2,0 = c2822

γ
−1/2
2,1 = c2 γ

+1/2
2,1 = 1− c2823

k = 3 γ
−1/2
3,0 = 1− c3 − c4 γ

+1/2
3,0 = c3824

γ
−1/2
3,1 = c4 γ

+1/2
3,1 = c4825

γ
−1/2
3,2 = c3 γ

+1/2
3,2 = 1− c3 − c4826

827

with the coefficients given by828

c1 = 0.05003 c3 = 0.01902 σ = 0.06891829

c2 = 1.0 c4 = 0.0855830

831

where σ is a parameter appearing in the definition of the numerical flux function as defined832

in Section 2 c.833

h. Reconstruction weights834

1) Constant reconstruction: ω1,0835

For the only possible setting k = 1 and r = 0 we only have one admissible stencil, which836

leads directly to837

ωλ
1,0 =

1

3
.838

37



2) Linear reconstruction: ω2,0 and ω2,1839

The weights are given by840

ωλ
2,0 =

1

3

γλ
2,0β2,0

γλ
2,0β2,0 + γλ

2,1β2,1

and ωλ
2,1 =

1

3

γλ
2,1β2,1

γλ
2,0β2,0 + γλ

2,1β2,1

,841

which can be simplified to ω
−1/2
2,0 = ω

+1/2
2,1 = 0 and ω

+1/2
2,0 = ω

−1/2
2,1 = 1/3 using the relations842

for the γ’s.843

3) Quadratic reconstruction:β3,0, β3,1 and β3,2844

The sums in Equation (A21) for β3,r are given by845

β3,0 :
∑

· · · = (φ̄i+1 − φ̄i)
2 + (φ̄i+2 − φ̄i+1)

2 = ∆φ2
i+1/2 +∆φi+3/2 ,846

β3,1 :
∑

· · · = (φ̄i − φ̄i−1)
2 + (φ̄i+1 − φ̄i)

2 = ∆φ2
i−1/2 +∆φi+1/2 ,847

β3,2 :
∑

· · · = (φ̄i−1 − φ̄i−2)
2 + (φ̄i − φ̄i−1)

2 = ∆φ2
i−3/2 +∆φi−1/2 ,848

849

yielding a factor850

β3,0 =
1

(ε+∆φ̄2
i+1/2 +∆φ̄2

i+3/2)
2
,851

which indicates that the two participating jumps in the parabolic reconstruction are weighted852

most if their sum is small, i. e. if the region is smooth. For the weights we obtain853

ωλ
3,0 =

1

3

γλ
3,0β3,0

γλ
3,0β3,0 + γλ

3,1β3,1 + γλ
3,2β3,2

. . .854
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Table 1. Average number of iterations of the Poisson solver (BICGSTAB) for the 1D GWP
test case, ref. Sec. 4

ε without div correction with div correction

10−5 4.8 0.1
10−6 14 0.15
10−7 8.4 0.7
10−8 15 15
10−9 4.6 6.4
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finite volume grid (grey) and the mass grid (black).

51



i− 1/2

i

i i+ 1/2

i+ 1 ρ

u, f ρu

Fig. 5. Position and indices for density, zonal velocity and momentum flux.
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Fig. 6. To achieve consistency between momentum and effective continuity equation the
two density differences symbolised with arrows have to be equal. The reconstructed values
of the ALDM densities ρ̃ are defined at the position of the hollow circles. The density
interpolations ρ̂ needed for the momentum flux are situated at the full circles.
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Fig. 7. Illustration of density interpolation rule (21). Position of density ρ̂ needed for f ρu

(filled circle) and reconstructed densities for mass flux ρ̃ (empty circle)
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Fig. 8. Convergence study for various time schemes with projection step switched off (left)
and with projecting the velocity to satisfy the pseudo-incompressible divergence constraint
(right) obtained with the 1D gravity wave packet test case.
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Fig. 9. Isolines of potential temperature for the hot bubble test case at t = 20 min. Left:
severe oscillations if total density ρ = ρ̄ + ρ′ is reconstructed width ALDM. Right: ALDM
reconstruction only applied to the density fluctuations ρ′.
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Fig. 10. Potential temperature of 1D gravity wave packet at t = 150 min. Left: severe oscil-
lations if total density ρ = ρ̄+ρ′ is reconstructed with ALDM. Right: ALDM reconstruction
only applied to the density fluctuations ρ′.
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Fig. 11. Fluctuation of vertical velocity (left) and potential temperature (right) in a uniform,
isothermal atmosphere at rest due to the divergence error after a few minutes physical time.
Poisson equation without scaling solved with a tolerance of ε = 10−7.

58



Fig. 12. Fluctuation of vertical velocity (left) and potential temperature (right) in a uniform,
isothermal atmosphere at rest due to the divergence error. Poisson equation with ρ̄θ̄-scaling
solved with a tolerance of ε = 10−7.
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Fig. 13. Potential temperature for the 1D gravity wave packet (see Sec. 4) without diver-
gence error correction (left) and with the divergence error correction as given in Eq. (64) for
a Poisson solver tolerance of ε = 10−5 (top) and ε = 10−7 (bottom).
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Fig. 14. Isolines of potential temperature perturbation θ′ = θ − θ̄ for the hot bubble test
case with stratification for z > 12 km after 20 minutes. The isolines range from −3.2 K
to 2.2 K in steps of 0.5 K. Positive perturbations are marked with a ”+” and negative
perturbations with a ”−”.
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Fig. 15. Isolines of density perturbation ρ′ = ρ− ρ̄ for Robert’s hot/cold bubble test case af-
ter 10 min with resolution 100×100 (left) and 200×200 (right) calculated by Robert (1993)
with an upwind scheme for the Euler equations (top) and calculated with pincFloit, i. e.
pseudo-incompressible equations with an implicit turbulence model (bottom). The ten iso-
lines are evenly spaced from ρ′ = −2.2 g m−3 to ρ′ = 0.5 g m−3 in steps of ∆ρ′ = 0.3 g m−3.
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Fig. 16. Isolines of density perturbation for Robert’s test case without initial wind (left
column) and with a uniform mean wind u0 = 1.67 m s−1 (right column). Initial setting
(top center), after 1

3
10 minutes (2nd row), after 2

3
10 minutes (3rd row) and after 10 minutes

(last row) calculated with ALDM on a 200 × 200 grid. Spacing of contour lines: from
ρ′ = −2.2 g m−3 to ρ′ = 0.5 g m−3 in steps of ∆ρ′ = 0.3 g m−3.
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Fig. 17. Amplitude maximum of buoyancy as a function of time for the 1D GWP for wave
number 2 to 5 calculated with the full model at a resolution of nλ = 16 points per wave
length for the initial wave with k0 (left), nλ = 32 (right) and the WKB model (solid line).
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Fig. 18. Amplitude maximum of buoyancy as a function of time for the 1D GWP for wave
number 2 to 5 calculated with the full model at a Poisson solver tolerance of ε = 10−5 (left),
ε = 10−7 (right) and the WKB model (solid lines).
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Fig. 19. Amplitude maximum of buoyancy as a function of time for the 1D GWP for wave
number 1 (left) and for the higher harmonics 2 to 5 (right) calculated with the full model
at a Poisson solver tolerance of ε = 10−7 without the divergence error correction. The solid
line shows the WKB predicted behaviour.
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Fig. 20. Isolines of the total potential temperature θ = θ̄ + θ′ for a breaking 2D gravity
wave packet. From left to right and top to bottom after 0, 10, 20, 30, 40 and 50 minutes.
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Fig. 21. Reconstruction of φ in cell i.
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Fig. 22. Two possible reconstructions of φ in cell i with linear functions with weights α for
corresponding filtered values φ̄.
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