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Abstract

The differentially heated rotating annulus is a classicg@legiment for the investigation of
baroclinic flows and can be regarded as a strongly simpliiedriatory model of the atmo-
sphere in mid-latitudes. Data of this experiment, measatéide BTU Cottbus-Senftenberg,
are used to validate two numerical finite-volume mod&CA and cylFloit) which differ
basically in their grid structure. Both models employ an ligip parameterization of the
subgrid-scale turbulence by tieaptive Local Deconvolution MethddLDM). One part
of the laboratory procedure, which is commonly neglectedimulations, is the annulus
spin-up. During this phase the annulus is accelerated fratata of rest to a desired an-
gular velocity. We use a simple modelling approach of the-s to investigate whether it
increases the agreement between experiment and simul@tiermodel validation compares
the azimuthal mode numbers of the baroclinic waves and dpes@pal component analysis
of time series of the temperature field. The Eady model of ddanic instability provides a

guideline for the qualitative understanding of the obstowzs.
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Zusammenfassung

Der differentiell geheizte, rotierende Zylinderspalt (Arus) ist ein klassisches Experiment
zur Untersuchung barokliner Stromungen und kann als aitk siereinfachtes Labormodell
der Atmosphare in mittleren Breiten betrachtet werdensddaten von diesem Experiment,
die an der BTU Cottbus-Senftenberg gewonnen wurden, wdrigerzur Validierung zweier
numerischer Finite-Volumen-Modell&NCA undcylFloit) verwendet, die sich hauptsachlich
in ihrer Gitterstruktur voneinander unterscheiden. Bévtialelle nutzen ein Verfahren zur
inpliziten Parametrisierung der Turbulenz auf der Subggttala, die Adaptive Lokale Ent-
faltung (Adaptive Local Deconvolution Method, ALDMEin Bestandteil des experimentel-
len Ablaufes, der in Simulationen tiblicherweise vernashigt wird, ist die Anlaufphase des
Annulus (Spin-up). Wahrend dieser Phase wird der Annuligsceem Zustand der Ruhe auf
eine gewiunschte Winkelgeschwindigkeit beschleunigietinfache Modellierung der An-
laufphase soll zeigen, ob durch ihre Einbeziehung einBepelbereinstimmung zwischen
Experiment und Simulation erzielt werden kann. GegenstiesdVergleiches zwischen den
numerischen Modellen und dem Experiment ist einmal die atdita Modenzahl der barokili-
nen Wellen und zum anderen eine Hauptkomponentenanalgseifal Component Analy-
sis) von Temperaturfeldzeitreihen. Das Eady-Modell deokitnen Instabilitat erlaubt eine

theoretische Einordnung der Beobachtungen.



s 1 Introduction

% The atmosphere as a research object poses some particallengles. Due to its extreme com-
s plexity any aspect addressed is embedded into the intenaafia multitude of interdependent

s processes which make a special focus difficult. Those ps

pcesre always active and typically
s most of them are not completely detectable from analysisaorpaign data. This leads to an
s unsatisfactory element of speculation in the theoreticgdrpretation of measurements which
3 should be reduced as much as possible. Repeated and detegedirements are indispensable
« andimportant, as they are the only source of informatioruaitie real atmosphere. To a certain
« degree they are limited by the actual non-repeatabilityro&amospheric situation. The same
« event never occurs twice. This argues for complementaigréabry experiments. If designed
. well, they have a decided focus and the level of repeatalslitonsiderably higher than in mea-
« surements of the atmosphere itself.

a5 A classical experiment of this kind is the differentiallyated rotating annulus developed by
« HIDE (1958). A fluid is confined between two cylindrical walls withe inner wall kept at a
«r lower temperature than the outer. The entire apparatusisitad on a turntable. At sufficiently
«s fastrotation this set-up leads to a baroclinic instabiitysely related to that which is believed to
s be the core process of mid-latitude cyclogenesis. A surédlyeoflow regimes observed in this
s experimentis found in HHE and MASON (1975) and GiIL et al. (2010).

51 The relatedness of the rotating-annulus flow to the mideldé atmospheric flow makes this
s experiment a popular testbed for analytical and numericadets. First WLLIAMS (1969,

ss 1971) developed a finite-difference Boussinesq code usinggalar, cylindrical grid. This
s« has been improved in the model ofMES et al. (1981), developed byaARNELL and R.UMB

ss (1975, 1976) and ARNELL (1980), where the staggered grid was stretched to have eattan
ss resolution close to the boundaries. This model has dirdmign used in many studies (e.g.,

s7 HIGNETT et al., 1985; RAD, 1986; READ et al., 1997) and it has been varied to test alternative
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numerical approaches, such as semi-Lagrangian modelsiRt al., 2000). A pseudospectral
Boussinesq algorithm has been applied more recently tordil@d annulus by M\UBERT and
RANDRIAMAMPIANINA (2002, 2003), RNDRIAMAMPIANINA et al. (2006) and RAD et al.
(2008). The corresponding laboratory measurements haedmne with high-Prandtl-number
liquids instead of air (RNDRIAMAMPIANINA et al., 2006). A modeling variant for the balanced
flow part has been suggested byitWams et al. (2009) who have developed a quasi-geostrophic

two-layer model for the annulus.

With the last exception all of the listed algorithms moded #mnulus by direct numerical
simulations (DNS). In general, the annulus flow is turbulexprominent example is probably
geostrophic turbulence, where flow structures of smallagtle scales become increasingly
important as the rotation rate of the annulus is increasedgldnd MasoN, 1975; HDE, 1977,
READ, 2001). Thus, numerical simulations of the annulus flow @sumed to profit from a
parameterization of the unresolved turbulence in the freonle of a large-eddy simulation (LES)
model. We employ an implicit subgrid-scale (SGS) paranmdton within the framework of
finite-volume modeling that has been realized bz kEL et al. (2006) in theAdaptive Local
Deconvolution MethodALDM) for LES of turbulent fluid flow and ALDM for passive-sta
transport (HCKEL et al., 2007). ALDM has been thoroughly tested against b@acks from
literature. Comparison of various turbulence quantitind aharacteristics, including, e.g.,
energy spectra and energy dissipation rates with DNS mederdata have shown that ALDM
performs at least as well as established explicit SGS m¢tikelthe dynamic Smagorinsky model
(GERMANO et al., 1991). Relevant examples for turbulent flows, whiatehbeen successfully
predicted by ALDM, are decaying turbulence IEL et al., 2006), boundary layer flows
(HickeL and Abams, 2007, 2008) and separated flowsI¢iHEL et al., 2008; @ILLI et al.,
2012). Simulations of stratified turbulence by®vLER and HCKEL (2012, 2013) and of

convective flow and vertical gravity wave propagation in étiosphere using non-Boussinesq
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soundproof modelling (RPER et al., 2013) have demonstrated the applicability of ALDM to
geophysical problems.

In the present paper we describe and discuss two finite-vwkigorithms for the differen-
tially heated rotating annulus. One of them (cylFloit) isnfmulated in cylindrical coordinates,
the other one (INCA) uses Cartesian coordinates, adaptoadly refined grids and a conserva-
tive immersed boundary method @MER et al., 2010a,b) to describe the cylindrical geometry
on the Cartesian grid. Both models use ALDM as an implicit S@@&meterization. A com-
parison between the two models and the experiment basedlmidgnce characteristics is not
part of this work, since such information cannot be obtaifieth the available experimental
data. Therefore, the present validation of the two moddimited to a qualitative comparison
with experimental data. Section 3 includes the comparidathe dominant azimuthal mode
numbers of the baroclinic waves and the comparison of therarhvariability patterns of the

temperature field obtained from a principal component aigly

2 Physical and Numerical Models

2.1 Differentially Heated Rotating Annulus

A schematic view of the differentially heated rotating alusus given in Fig. 1. It consists of
two coaxial cylinders mounted on a turntable. The innemaigr, of radius:, is cooled to the
constant temperatufg, and the outer cylinder, of radidgs heated to the temperattifg > T,.
The gap between the two cylinders is filled with water up todbpthd and in some set-ups of
the experiment the fluid surface is fixed with a lid. The endéipparatus rotates at the angular
velocity 2. The cylindrical coordinates to which we refer in the foliogy are the azimuth angle
9, the radial distance from the axis of rotatiorand the vertical distance from the bottamThe

cylindrical unit vectors in azimuthal, radial, and vertidaection areey, e,., ande..
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At the radial and vertical boundaries no-slip wall boundaoyditions are applied, i.e.,

v V|,04=0, (2.1)

r=a,b

wherev = uey + ve, + we, is the velocity vector. This holds at= d if a rigid lid covers
the fluid surface. A free fluid surface is approximated by awigcid” lid where tangential and

normal stresses due to molecular friction are set to zeris. [€hds to:

Ju
0z

o
Z:d_ 0z

—0. (2.2)

z=d

The vertical velocity component atz = d vanishes as for the no-slip wall{NIES et al., 1981;

FERzIGERand FERIC, 2008).

Boundary conditions for the temperature are isothermahdgl walls:

T|,—, = Ta, (2.3)

Ty =Tp (2.4)

and the annulus bottom and fluid surface are assumed to beasidiavhether a lid covers the

surface or not. Thus the heat flux in vertical direction vaass

oT

el =0. 2.5
0z 2=0,d ’ ( )

The heat transfer between fluid and ambient air (via radiat@mnduction, advection and

evaporation) is excluded from the model.



mw 2.2 Governing equations

Since deviationg\p from the constant background density of the flujdare generally relatively
small in the considered temperature rafg®p| < po), the fluid-dynamical equations are used
in the Boussinesq approximation (e.gALIs, 2006). To the largest part they are identical
to the equations used byARNELL and R.umB (1975, 1976) and K5NETT et al. (1985). In
contrast to these authors, we use them in flux form since omrenigal model makes use of a
finite-volume discretization. The pressyrés split into a time-independent reference pressure
po and the deviation\p therefrom. If the angular velocit is constant, denoted case |, the
reference pressure is defined so that the pressure gradierti§ balanced by gravity and the
centrifugal force. In contrast, a time-dependent angwtwaity (of interest below) only allows

a reference pressure in equilibrium with gravity (case Il):

gpo — [ x (2 x7)]po ()

Vpo =V - (pol) = ) (2.6)
gro (I
w1 wherel is the unit tensorg = —ge., is gravitational forceQ2 = Qe., is the angular-velocity
12 Vector andr = re,. + ze, is the position vector.
The mass-specific momentum equation is then given by:
d —[@x(@x7)]p 0]
. V.M-22xv+gi+ 40 . @
ot S (@xr) = (D)

where (2.6) has been subtractgd= Ap/py is the non-dimensional density deviation. The first

term on the right-hand side is the divergence of the symmettal momentum flux tensor:

M= vv + pl — 0o, (2.8)

which consists of the advective flux of mass-specific monrentlescribed by the dyadic product
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vv, the density-specific pressure tensor with: Ap/po and the viscous stress tensor:
T
o=v|Vv+ (Vo) ] : (2.9)

wherev is the kinematic viscosityVv is the velocity-gradient tensor and the supersciipt

denotes the transpose.

The flux term in equation (2.7) is followed by the Coriolisderand the reduced gravitational
force. In case | the last term is the reduced centrifugalefonereas in case Il we have the full

centrifugal force and the Euler foreed€2/d¢ x r (JOHNSON, 1998; GREENSPAN 1990).

The governing equations are completed by the continuitygo:
V-v=0 (2.10)
and the thermodynamic internal energy equation:
%—f =-V.(wT)+ V- (skVT), (2.12)
with the thermal diffusivityx, and the equation of state:

p=a,+B,T+~,T% (2.12)

The values of the coefficients,, 3, and~, depend on the fluid and the expected temperature

range.

Viscosity v and thermal diffusivitys vary more or less strongly with temperature. Just as is

the case for the equation of state, this dependence is copiparameterized by a power series

10
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ansatz, where powefs" with n > 2 are neglected:

v=oy,+ BT +vT? (2.13)

k=0 + BT +~.T?. (2.14)

To determine the coefficients of egs. (2.12), (2.13) and4(2 darabolas were fitted to tabulated
values for water taken from BREIN DEUTSCHERINGENIEURE et al. (2006). The coefficients
of the fitted parabolas are listed in table 1. The quality effthis illustrated in Fig. 2.

A given fit of the form¢ = «a,, + BT + 7,12, whereg = p, v, x can be reformulated in

terms of the deviatioff — T, from a constant reference temperatlise= (7, + Tp) /2 :

6= o [L+01 (T =) + 62 (T~ o)’ . (2.15)
with the coefficients:
do = g + BsTo + 7615, (2.16a)
b2 = e/ b0, (2.16b)
b1 = By/do + 2¢2T0. (2.16c¢)

2.3 Discretization

2.3.1 cylFloit

The simulation of the fluid flow in the rotating annulus is ieadl by thecylindrical flow
solver with implicit turbulence modétylFloit), which is based on thpseudo-incompressible
flow solver with implicit turbulence modépincFloit) designed to integrate Durran’s pseudo-

incompressible equations for atmospheric problem&#gRR et al., 2013). The implicit SGS

11
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strategy of pincFloit has been adopted directly. The nuraérnodel uses a finite-volume
discretization of the governing equations on a regulamdylcal grid depicted in Fig. 3a and
3b (the governing equations (2.7) to (2.11) in cylindricadidinates are listed in appendix A.1).
For this purpose the equations are averaged over a gridaaline. The side lengths of a cell,
shown in Fig. 3c, ard\y = 27 /Ny, Ar = (b — a) /N, andAz = d/N,, whereNy, N,. andN,

are the numbers of grid cells in azimuthal, radial and valtiirection.

All volume averaged variables are arranged in C-grid fas(WiRAKAWA and LAMB, 1977).
Fig. 3d shows a finite-volume cell of the scalar variablesperature and pressure with the
velocities defined at the cell interfaces. Each velocity ponent has its own cell, shifted with

respect to the temperature cell by half a cell in the corredjmg direction.

With the exception of the advective fluxes, all right-hamdkgerms of the volume averaged
governing equations are discretized using standard sewmatet accurate finite-volume tech-
niques (see, e.g.,BRzIGER and FERIC (2008) and appendix A.3 for more details). We use
the Adaptive Local Deconvolution Method (ALDM) (HKEL et al., 2006) for discretizing the
advective fluxes. ALDM follows a holistic implicit LES appaioh, where physical SGS parame-
terization and numerical modelling are fully merged. Tlsatlie numerical discretization of the
advective terms acts as an energy sink providing a suitabistained amount of dissipation.
ALDM implicit LES combines a generalized high-order scalaikarity approach (i.e., decon-
volution) with a tensor eddy viscosity regularization tistonsistent with spectral turbulence
theory. Deconvolution is achieved through nonlinear alepeconstruction of the unfiltered
solution on the represented scales and secondary reguianzs provided by a tailored numer-
ical flux function. The unfiltered solution is locally appimated by a convex combination of
Harten-type deconvolution polynomials, where the indinbweights for these polynomials are
locally and dynamically adjusted based on the smoothnessediltered solution. The slightly

dissipative numerical flux function operates on this wedghieconstruction. Both, the solution-

12
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adaptive polynomial weighting and the numerical flux fuantinvolve free model parameters.
HICKEL et al. (2006, 2007) calibrated these parameters in such ahaéyhe discretized equa-
tions correctly represent the spectral energy transfesatrapic turbulence as predicted by ana-
lytical theories of turbulence. Note that this set of partarewas not changed for any subsequent
application. ALDM was extended to buoyancy-dominated flawd successfully validated with
DNS results of stratified turbulence byeRMLER and HCKEL (2012, 2013, 2014).

Despite our simulations being LES, we retain moleculaugitin of momentum and heat in
the model for several reasons. First of all to make the mantedistent in that it convergesto DNS
for sufficiently high grid resolution. In addition, explidiffusion in the governing equations is
required to apply the boundary conditions presented in@e&.1, since ALDM contains no
explicit turbulent diffusion, for example by a turbulentests tensor. Finally, molecular viscosity
and diffusivity play an important role in the boundary layat the annulus bottom and cylindrical
walls (POPE, 2000; FERzIGERand FERIC, 2008).

Time integration fromt to ¢t + At is done using the explicit, low-storage third-order Runge-
Kutta method of WLLIAMSON (1980). The integration time stept can either be held fixed or
computed adaptively from several stability criteria. Narfi¢hose is rigorous in a mathematical
sense, but experience has shown them to be helpfab@Ret al., 2013).

Pressure, as dynamic mediator of the incompressibilitw&en the momentum components,
has no separate prognostic equation. Continuity and mameetjuations can be combined
to derive a diagnostic Poisson equation, which is then slofee the pressure update in the

framework of a fractional step method as originally propblsg CHORIN (1968).

232 INCA

INCA is a multi-purpose engineering flow solver for both caegsible and incompressible
problems using Cartesian adaptive grids and an immerseadaoy method to represent solid

walls that are not aligned with grid lines. INCA has succelgibeen applied to a wide range
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of different flow problems, ranging from incompressible hdary layer flows (HcKEL et al.,

2008; HCKEL and AbAMS, 2008) to supersonic flows (@LLI et al., 2012).

In the current context we have used the incompressible reaafUNCA with an extension
to fluids with small density perturbations governed by thei&inesq equations (see appendix
A.2 for the Boussinesq equations in Cartesian coordinaf€ésg equations are discretized by
a finite-volume fractional-step method ORIN, 1968) on staggered Cartesian mesh blocks.
For the spatial discretization of the advective terms we AlsBM with implicit turbulence
parameterization as described above. For the diffusivegeand the pressure Poisson solver
we chose a non-dissipative central scheme with 2nd orderacg. For time advancement the
explicit third-order Runge-Kutta scheme ofi$ (1988) is used. The time-step is dynamically
adapted to satisfy a Courant-Friedrichs-Lewy conditiothwi /'L < 1.0. The Poisson equation
for the pressure is solved at every Runge-Kutta sub-stepg @sKrylov subspace solver with
algebraic-multigrid preconditioning.

The general applicability of INCA in the Boussinesq appnoaiion to stably stratified

turbulent flows has been demonstrated lBMRILER and HCKEL (2012, 2013) and RUMAN

et al. (2014).

To represent the annulus geometry within Cartesian grig¢ksidn INCA, we use two
cylindrical immersed boundaries representing the inner the outer wall, respectively. The
Conservative Immersed Interface Method oEWMER et al. (2010b) is employed to impose
an isothermal-wall no-slip condition at these immersedriganies. The wall temperature is
adjusted to match the experimental conditions. The fretasearat the top of the domain is
modeled as an adiabatic slip wall, while the bottom is madielean adiabatic no-slip wall and

requires sufficient near-wall refinement to properly resdhe boundary layer.

In the vertical direction we split the domain in two equaligesl blocks. The upper block

is decomposed into 25 equally sized cells, while the loweckhas 35 cells with a refinement

14
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towards the bottom wall. In the horizontal directions thiel gs automatically generated by the
adaptive mesh refinement (AMR) module of INCA. This routipdits a given coarse starting
grid block into smaller blocks and refines those which cangasolid boundary. This procedure
is repeated until a desired maximum cell size normal to thiéssvead in the domain interior is
reached. Using this procedure we generated three diffgreist(see table 2 and Fig. 4). Grids 11
and 12 (where ‘I’ denotes INCA) have the same cell size in thmdin interior, grid 12 has three
times the near wall resolution compared to grid I11. Grid I8 tiee same near-wall resolution as
grid 12, but smaller cells in the domain interior.

Comparative simulations at different rotation rates wiité three grids showed that there are
practically no differences between the result from gridid &, so the medium sized grid 12 was
in all cases sufficient. Between grid 11 and 12 the differen@garding the final wave number
and the phase velocity of the waves are in some cases moreyrreed. Hence we used the

medium grid 12 for most simulations presented here, unleded otherwise.

3 Model Validation

Results of 26 laboratory experiments carried out at the BDtihDs-Senftenberg were used for
the validation of our models. Different techniques havebemployed there to measure the flow
in the rotating annulus, e.g., particle image velocimetrynivestigate the hoirzontal velocity
field at certain heights or infrared thermography to meathee¢emperature of the fluid surface
(HARLANDER et al., 2011). Here results of the latter are used, as theyeltsuited to visualize
the baroclinic waves. We focus on the azimuthal mode numidyecdominant baroclinic wave

and on leading patterns of variability.

3.1 Set-up of the Experiment

The physical parameters of the experiments are listed ite tdb These values should be

understood as mean values since small deviations are wadleiin the laboratory practice. The
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listed values of, andT;, are kept constant via active computer control (to the exteit).05 K),
the methods and characteristics of which have been disgtisseughly byvoN LARCHERand
EGBERS(2005). The only physical parameter in which the experimeliffer from each other
is the angular velocity which is listed in table 5. Each expent is initialized with zero angular
velocity until an azimuthally symmetric thermal overturgicirculation has fully developed.
After this the annulus is accelerated to its final angulanei®y within a spin-up period of about
20 s. Unavoidable small perturbations lead to the formationarbllinic waves if the respective
experimental configuration is baroclinically unstablenc®i the surface of the annular gap is
free, infrared thermography can be applied to measure therwarface temperature (infrared
radiation is generally absorbed by glass or acryllic, tfreeeethermography cannot be applied
for set-ups with rigid top). The infrared camera is mountedve the middle of the wave tank.
In everydt = 5, 640 x 480-pixel thermograms are taken, covering the surface of tinelas
with a resolution of~ 0.03 K. The patterns in these thermograms can be considenddce
temperaturestructures, since the penetration depth of the applied leagth range into water is
only some millimetres. These surface temperature mapsiréwe heat transport between inner

and outer cylinder walls (HRLANDER et al., 2011, 2012).

3.2 Numerical Set-up and Simulation Strategy

The general outline of a simulation is as follows: Using tleagmeters of the experiments
and initial fieldsv = 0, p = 0 andT = Ty = (T, + T») /2 (guaranteeing zero buoyancy at
the beginning), an approximation to the stationary azimlliftsymmetric solution of the non-
rotating system is computed. With cylFloit, this is doneyvefficiently by setting the number
of grid cells in azimuthal direction t&y = 1, which suppresses azimuthal gradients. With the
Cartesian grid model INCA, fully three-dimensional (3-Dijnslations have been performed

for generating this two-dimensional (2-D) steady stateutsmh. Several tests with different
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integration times showed that after a timetef, = 10800s (= 3h) a fully converged steady
state is reached with cylFloit. This 2-D steady state is theed for the initialization of the
fully 3-D simulations. In order to trigger baroclinic waydsw amplitude random perturbations
are added to the temperature field, which is the only field m@tctly coupled to the other
fields via a diagnostic equation. The maximum amplitude es¢hperturbations is set to
0T pers = 0.03|T, — T,,|. This second integration then proceeds until the baracli@ives have
fully developed.

A further issue is the time dependence of the angular vgldtit In the classical variant,
described, e.g., byARNELL and R.UMB (1976), it is set constant right away from the beginning
of the azimuthally symmetric simulation. This might be abie in an idealized baroclinic
stability analysis but it does not optimally reflect the sptef the laboratory experiment, where
the point in parameter space to be investigated can onlydwheel by moving through parameter
space, by either varyin§@ or 7, and T;. It cannot be excluded that this transient phase
leaves an impact on the finally established regime, e.g.,dnjimear interactions. Therefore,
a second variant closer to the laboratory procedure is sitedlby assuming the following time

dependence of the angular velocity:

0, 0<t<tp
Q) =45 {1—cos[Z(t—top)]}, tap <t <top+T- (3.1)
Qy, t>top + 7

Here(); is the final constant angular velocity used in the experiraedt- denotes the spin-up
period of the rotating annulus. (3.1) is depicted in Fig. 5.

The numerical specifications of the cylFloit simulations bsted in table 4. The resolution
of grid C3 (where ‘C’ denotes cylFloit) is used for the sintida of all 26 experiments. Using
the spin-up period of the laboratory experiment,= 20s, for the numerical experiments

with cylFloit as well was possible only up to experiment #1&mulations of the subsequent
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266

267
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269

270

271

272

273
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276

experiments developed a numerical instability the reasonvhich has not yet been found. It
might be linked to the strong shear developing in the bounldaeer regions during and after the
spin-up period. To avoid this, it was decided to increasesftie-up period, thereby leaving more
time for frictional processes to reduce the shear in the Bannlayers. The new values, ranging

from T = 180s for #13 tor = 910 s for #26, are listed in table 4.

Furthermore, the number of grid cells used with cylFloiba# only a poor resolution of the
viscous and thermal boundary layers in the rotating annule approximate thicknessés,
0s anddr of the viscous Ekman layer at the bottom, the viscous Stemarénd the thermal

boundary layers on the side walls, respectively, are:

6g = dEkY?, (3.2)
0s = (b—a) EE'/3, (3.3)

Koo 1/4
or=d , 3.4
r= () G4

where
_

Ek = 5 (3.5)

is the Ekman number BRNELL and R.uMB, 1975; AMES et al., 1981). Here we use reference
values for the kinematic viscosity, = v(T,) and thermal diffusivityxg = x(7y) following
from (2.13) and (2.14) in the formulation (2.15) at referetemperaturdy, = (7, + T3)/2.

p1 is the negative thermal expansion coefficientfgrfollowing from (2.12) in the formulation
(2.15). The approximate thicknesses of the boundary lageige fromiy = 0.57 to 1.65 mm,

0s = 1.96 to 4mm anddér = 0.94 mm. The cell widths in radial and vertical direction used for

the simulation of all 26 experiments afer = 1.88 mm andAz = 2.7 mm (see grid C3 in table
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4). Especially the Ekman layer at the bottom is not well repréed on the numerical grid. In
section 3.3.4 we present results from three of the 26 expatisnwhich were simulated with a
higher grid resolution (grid C4 in table 4), resolving thertmal boundary layer and the Ekman
layer by approximately one grid cell.

INCA simulations were performed using a constant rate dadtion starting right from the
beginning and alternatively using a variable rotation @teording to equation (3.1) with the
initial non-rotating time being.p = 200s and the spin-up time = 200s. These choices
assured a sufficiently converged axisymmetric initial Soluas well as a realistic onset of
rotation. All simulations were run over a total time span 608, which was in most cases
sufficient for establishing stable baroclinic waves. Uginigl I2 and I3, the boundary layers are

at least resolved by two grid cells.

3.3 Numerical Results

3.3.1 cylFloit

Table 5 shows the dominant azimuthal mode number as obsertied experiments and in the
two simulation variants after a full 3-D integration timel®800 s (= 3 h), on top of an initiaB h
for the azimuthally symmetric simulation. Three examplethe experimentally observed and
the simulated temperature fields, far= 4.04r.p.m., 6 r.p.m., and25.02 r.p.m. (experiments
#3, #7 and #26), are shown in Figs. 6, 7 and 8. A general defigienall simulations is
that the simulated temperature differences at the fluidaserfire relatively low compared to
the laboratory measurement. The temperature differencé®dome more pronounced in the
simulations a few centimeters below the surface. Theretbee simulated temperature fields
have been plotted at height= 100 mm (the fluid depth isi = 135 mm).

As a function of the rotation rate, baroclinic instabilitgts in at2 = 3.53r.p.m. in the

laboratory experiment, & = 4.04 r.p.m. in the second simulation variant with spin-up and at
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Q = 5.01r.p.m. in the first simulation variant without spin-up.

The quasi-geostrophic model byaBy (1949) can be used as a guideline for understanding

the instability mechanism. It predicts the flow to becomeobkmically unstable if the approxi-

2 2
- (5 - () < (2

is satisfied, wherg,. = 2.399 and (u./7)? = 0.583 (e.g. HDE and MASON, 1975; \ALLIS,

mated criterion:

2006). Bu is the Burger number anfl; = Nd/f is the internal Rossby deformation radius
which sets the length scale of the baroclinic instabilify= 2(2 is the Coriolis parameter and
N is the Brunt-Vaisala frequency. Assuming thiét_o ~ p(7T,) andp|.—q =~ p(7}) due to the

buoyancy driven circulation, a global estimateMdimay read:

N~ \/_gﬁ(m;ﬁ(m _ \/glpl (T;—Ta)l, 3.7)

where in the last step equation (2.12) was used in the forabYJHIDE, 1967). With the
approximation (3.7), the Burger number can be assumed te the&vsame magnitude as the so
called thermal Rossby number, an important dimensionlasspeter of the annulus experiment

(HIDE, 1958, 1967; ARLANDER et al., 2011):
Roy, = 4Bu. (3.8)

Roy, is a rough estimate for the true Rossby numBer= U/(fL) which is the ratio of the
magnitude of the inertial force to that of the Coriolis forc&o,; is obtained by estimating
the (azimuthal) velocity scale from the thermal wind relatU ~ NZ2d2/[f(b — a)] =~

N2d?/[Q(b—a)] and choosind. = b—a for the horizontal length scale. In additigris replaced

by 2, which is the reason for the factdrin (3.8) (HIDE, 1958, 1967). The Burger numbers of
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all experiments are listed in table 5. For the sake of corapksts, we have listed two further
important dimensionless parameters in table 5, the Taylarber (HDE, 1958; HARLANDER

etal., 2011):

_4Q%(b—a)’

Ta= 3.9
i (3.9)

which compares the square of the magnitude of the Corialeefto the square of the magnitude

of the viscous force, and the thermal Reynolds number:

N2q?
fro ’

Rey, = (3.10)

which might be used as a rough estimate for the true ReynaldbarRe = U L/v being the
ratio of the magnitude of the inertial force to that of thecaigs force (HDE, 1958; ROPE, 2000).
As in the case of the thermal Rossby number, the thermal Réymamber (3.10) is obtained

whenL = b — a andU is chosen using the thermal wind relation.

Using the parameters of the validation experiments, we Mave: 0.4s~' and condition
(3.6) would suggest instability to occur for angular veligss(2 > 4.5 r.p.m., which is satisfied
from experiment #4 upwards. This agrees quiet well with thget of instability observed in the
experiment and both simulation variants. Furthermore,aareobserve that the flow becomes
more and more irregular as the rotation rate is increasedagragt from the dominant azimuthal
mode number, additional mode numbers play an important fiolelly leading to geostrophic
turbulence. This agrees with the various flow regimes in theulus found, e.g., by HE and
MASON (1975). The simulations with spin-up are reproducing theiti@nt azimuthal mode
number from the experiment more often than those without-gpi(agreement in 15 of the 26
cases with spin-up compared to 10 cases of agreement wigpouwup). In the cases with a
discrepancy between the experiment and the simulatioasithulations tend to predict a mode

number larger than observed in the experiment. An observaif interest in this context is
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that for rotation rates betwedr2 r.p.m. and15.99 r.p.m., where both simulation variants miss
the correct result, the spin-up variant does reproducedhect azimuthal mode number for a
relatively long time of the integration. But ultimately, tahes betweer2700s and9700 s, each

of the mentioned simulations pass to the next higher modebeumvhich in case of the first
simulation variant without spin-up was observed right fritra start. It cannot be excluded that
when continuing the simulations beyond= 3 h, further transitions take place in case of the

simulation with spin-up (e.g., at rotation rates8 r.p.m. and11.3r.p.m.).

3.32 INCA

For a general comparison of our simulations with the cowadmng experiment we use again
the mode number obtained in the quasi-stationary solutidable 5 summarizes the mode
numbers obtained in different simulations with and withspin-up simulation. The principal
mode number in the simulations tends to be higher than in xperament. The transition to
mode 3 occurs already & = 4.5r.p.m. (instead of2 = 5.4r.p.m. in the experiment) and the
transition to mode 4 occurs alreadyfat= 7.5r.p.m. (instead of a2 = 8.5r.p.m. and then only
atQ = 13r.p.m. in the experiment). These results are independethieofised computational
grid. In some cases a lower mode number is obtained if thewgpiprocess is included in the
simulation, but this does not solve the general issue ofamgtirend towards mode number 4.
A representative result from the grid convergence studyh@wve in Fig. 14, where we
compare the results of INCA simulations for experiment #t4lbthree grids. In all three cases
the simulated mode number is too high (4 instead of 3 in the’xnt). The flow topology is
similar in all simulations and does not show a strong depecelen the grid. We measured the
phase velocity at which the baroclinic wave is travellingldound a value ofv = 0.0246s~!
for grid 11 and a value ofs = 0.0229s~"! for grids 12 and 13. This indicates that the medium

resolution is sufficient if the three present grids are abergd.
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We selected experiment #10 to show the effect of a finite gpitime on the result in Figs.
15 and 16. In the experiment a clear mode number 3 wave wasvelseln the simulation
without spin-up the mode number 4 starts developing rightfthe start. First, there is a weak
perturbation of the temperature iso-surfaces which gr&ventually the wave breaks generating
some turbulence and then saturates at an almost constalitta®pT his process is finished after
approximately 150 s. After this time, the basic shape of theandoes not change any more apart
from turbulent fluctuations.

We simulated the same case including the spin-up processasited above (accelerationin
the time spar200s < ¢ < 400s). When the spin-up is finished, the strong clockwise azimiuth
velocity, observed in the co-rotating frame, completelynizates the flow. It takes some time
until this jet has vanished due to wall friction. In the mewna the development of baroclinic
waves is suppressed. The flow field is quite turbulent, hanselifficult to judge when the wave
development starts. First waves can be observed @fteb00s. In this initial phase of wave
development both mode numbers 3 and 4 are visible. Afte650 s a fully grown mode number
3 wave dominates the flow, which is more and more replaced bpdemumber 4 wave after
t ~ 700s. The mode number 4 wave is fully established after800 s and does not change any

more throughout the remaining time of the simulation (whies stopped at= 1150s).

3.3.3 Theeffect of the spin-up

Here we want to have a closer look at the possible reasonkdardcurrence of different mode
numbers of the baroclinic waves depending on whether thelstion is initialized with or
without spin-up. One possible explanation is supportedcabypiatory and numerical hysteresis
experiments in which the angular velocity is first increasteg by step and afterwards decreased
step by step (see IMCZE et al. (2014) in the present issue). Over a wide range of angul
velocities the azimuthal mode numbers observed duringitrease differ from those observed

during the decrease at the same angular velocity. This stgygleat there are areas in the
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parameter space, where multiple equilibria do exist foapwater points within the area. The
range of angular velocities for which hysteresis has beeservied by UNCZE et al. (2014)
coincides largely with the range where we observe diffenestle numbers in simulations with
and without spin-up. Therefore, one may conclude that tfierdnt initial conditions in the two
simulation variants can lead to two different equilibrigheTtransitions from one mode number
to the next higher mode number observed in some of the spgiruplations (see section 3.3.1)

show that transitions between the equilibria are also ptessat least in the numerical model.

The existence of multiple equilibria might also be a factdich contributes to the strong
trend towards mode number 4 observed in the INCA simulat{eas section 3.3.2). The grid
structure of the Cartesian grids used by INCA 2u¢4-periodic in azimuthal direction (see Fig.
4). If a case of multiple equilibria is present and mode nurdlie one of the possible equilibria,
it might be favoured by the numerical grid. But the relevaoidhis factor should probably not be
overestimated, since a trend towards mode number 4 canalsoserved in cylFloit simulations

from experiment #11 upwards, although the grid is azimijfsgimmetric.

Another approach to the problem of different mode numbetkéntwo simulation variants
is obtained by considering the linear dynamics of the bammcivaves. We used a linearized
version of cylFloit to study which modes are the fastest gmgwor the least damped. The
background field is either the azimuthally symmetric initiackground at = t¢2p, which
we used in the simulations without spin-up, or an azimuthatage of the full flow after the
baroclinic waves have fully developed. The latter was usedimulations with and without spin-
up. When running the linearized model with unmodified fluidgmaeters, small-scale structures
are observed to grow fastest in amplitude and mask the grofthe large-scale baroclinic
modes. By increasing the kinematic viscosity and thermf@islvity to the constant value of
vp = ko = 1.2mm?/s (compare to the values of and x in the range fronl,, = 24°C to

T, = 32°Cin Fig. 2), the growth of the small-scale structures couldiyepressed. The effect
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of changing/y andkg on the linear dynamics of the baroclinic modes is assumed telatively
small. The simulations of the linearized model are iniziedl with the same random temperature

perturbations as the fully nonlinear simulations (seeisr@&.2).

A general observation is that the azimuthally averaged dpackad of the fully developed
baroclinic waves is not or only marginally baroclincallystable with relatively small growth
rates compared to the azimuthally symmetric initial baokgd of the simulations without spin-
up, provided that it is baroclinically unstable. In casedafoclinic instability we assume the
fastest growing mode to be the dominant mode and in casesxamoalinic instability we assume
the least damped mode to be the dominant mode. As an exaregldisr from experiment
#16 2 = 10.8r.p.m.) are shown in Fig. 9. It shows a mode 4 in the simulation vérian
without spin-up and a mode 3 in the simulation with spin-upjalu coincides with the mode
number observed in the laboratory experiment (see table(s).the azimuthally symmetric
initial background of the simulation without spin-up modgréws fastest (Fig. 9¢). The two
azimuthally averaged backgrounds of the flows with the fdiyeloped baroclinic waves are
stable with regard to small perturbations, so that we defieeléast damped mode to be the
dominant one. On the background in the simulation withourt-sip mode 5 is the least damped
(Fig. 9d), whereas on the background in the simulation with-sip mode 3 is the least damped
(Fig. 9e). So the backgrounds of baroclinic waves with difé mode numbers in the fully
nonlinear simulations can have also dominant modes ofrdiftemode numbers in the linear
dynamics on the backgrounds. This observation has beenimé&atther experiments, although
the mode numbers of the fully nonlinear baroclinic wave areldominant wave of the linear
dynamics do generally not agree, which indicates the ingpbmole of nonlinear interactions.
From the above results one may conclude that in simulatidthsand without spin-up, baroclinic
waves with different mode numbers can be observed, bechasevb backgrounds are most

unstable or least damping to linear wave modes with diffemeade numbers.
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3.3.4 Principal Component Analysis

In addition to the comparison of the azimuthal mode numbehefbaroclinic wave, we want
to compare the leading patterns of variability of the terapge field which are obtained from a
principal component analysis (PCA), a tool of multivariatatistics (e.g., REISENDORFER
1988; HARLANDER et al., 2011). For that purpose we collect the temperatuta ftam a
horizontal cross section at= 100 mm (like shown in Figs. 6, 7 and 8) at timesin a column

vector denoted witll’(j). After centering these values on their temporal averages:

T =T — (T), (3.11)

where(-) = Z;\Ll (1)/N andN is the total number of snapshots, the covariance matrix:

C = (W' (WT")") (3.12)

is calculated. Her®V is a diagonal weighting matrix with elements:

r(m)/b, form =n,
Wm,n = y (313)
0, form#n

wherer(m) is the radial coordinate of the grid point numbered with It accounts for the fact
that with increasing radius the horizontal area represehyea grid value of the temperature
increases as well (see Fig. 3a) (followingakiNACHI and O’NEILL, 2001; DLLIFFE, 2002).

The solutions of the eigenvalue equation:

Cek = §kek (3.14)
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are the eigenvectots;, referred to as empirical orthogonal functions (EOFs) &edigenvalues
&x. They are ordered accordingge > & > &3 > ... andk is called EOF index from now on.
The EOFs can be interpreted as the spatial patterns of Wayialbthe temperature field, witle,
being the pattern accounting for the most variance of theegaiure, namely,/ ", &.. The

EOFs are orthonormal to each other:

1, fork =1,

3

egel = 6kl = (3.15)
0, fork#1
and form a complete basis. Thus they can be used for the symthighe original data:
T'(j) =W " ax(j)ex, (3.16)

k

where ay(j) are the principal components which follow from projectiag onto WT" ()

(PREISENDORFER 1988).

The PCA was applied to experiments #3, #7 and #26. A timesefi8000 thermographic
snapshots with an interval 6fs between each snapshot entered the analysis of the laborator
measurements. On the numerical side we used only data f@oythloit simulations initialized
with spin-up. After an initialization period af000 s in case of #3 and #7, ant200 s for #26,
data of5 h of physical integration time were analyzed. These timessazonsist oN = 10000
samples with an interval of.8 s between two samples. In addition to results from simulation
using grid C3 Ny x N, x N, = 60 x 40 x 50), results from two coarser grid resolutions,
Ny x N, x N, = 15 x 10 x 12 named grid C1 in table 4 ardy x N,. x N, = 30 x 20 x 25
(grid C2) were analyzed. With grid CAN§ x N,. x N, = 120 x 80 x 150), we also tested
a grid which resolves the boundary layers by approximately/ eell. In simulations using this
grid, the recording of the data to be analyzed started ajreftér an initialization period of

1800 s for experiments #3, #7 and #26. The recorded time seriesst@isN = 2800 samples
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in case of #3 and #7, and = 1500 samples in case of #26 with an interval b§ between
two samples. The reduced extent of data is due to the sigmifjdacreased computational cost
of using grid C4, but its effect on the results seems to be ootidrge. In case of grids C3
and C4, additional simulations have been performed whetedad of ALDM, the simple central
difference scheme (CD) was used for the computation of tivecive fluxes (e.g., ERZIGER
and FERIC, 2008). This way, we can compare the simulations using ALDMimulations with
no particular subgrid-scale parameterization. The coimpamith another subgrid-scale model

is not possible, since ALDM is the only one implemented irFbyit.

As an example, Fig. 10 shows snapshots of the temperatulderdigliiting from the above
simulation variants for #26. Because for grid C4 the resoiuis high enough that results from
simulations using CD are relatively similar to results afa with ALDM, we show here and in
the following only ALDM results for C4. In the evaluation dfé results of the PCA we restricted
ourselves to the first EOF (EOF 1), which accounts for mosheftemperature variance. EOF
1 and the variance it accounts for are shown in Fig. 11 for #8, E2 for #7 and Fig. 13 for
#26. As pointed out by BHATZ and SHMITZ (1997) the PCA should agree with a Fourier
decomposition up to arbitrary constant factors in coorirlirections along which forcing and
boundary conditions are symmetric. Hence, if the time serieorporated into the PCA is large
enough to fully represent the system in a statistical sexseh) EOF should represent one and
only one harmonic in azimuthal direction. Inspecting theHs@n Figs. 11 — 13 by eye shows
that this is satisfied here for the most part. Since in theiEodecomposition each wave number
corresponds to a cosine and sine mode, one can observe iC&k¢hBt the EOFs build pairs.
Inside a pair the EOFs have the same azimuthal wave numbkeabetan azimuthal phase shift.
EOF 2, e.g. has the same shape as EOF 1 and accounts for theuisamet of variance (not

shown).

In order to compare EOFs of the same EOF index, obtainedrdithra laboratory measure-
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ment data or from numerical data, we made use of the cowalatefficient:

~T ~
€1,k€ILk
Ok =
~T =~ ~T ~
\/(el,kel,k) (ell,kell,k)

whereé = W~le andéyk, €m,, denote EOFs obtained from laboratory or numerical data,

, (3.17)

respectively (e.g.,ALLIFFE, 2002). The standardization by means of the denominatd. irv{

is required since is assumed not to satisfy (3.15). To apply (3.17) it is nemgst® interpolate
the EOFs from the laboratory data, which are mapped on a Santgrid, onto the respective
numerical grid, which certainly also affects their orthomality. Since the azimuthal orientation
of EOFs of different data is arbitrargy,;, andérr,, were rotated against one another to find
the offset angle yielding the largest correlation coeffitieAccording to the scalar product of
physical vectors, the correlation coefficient can be imegrl aso;, = cos ¢, Whereyy, is the
“angle” between the two EOFs. Thug € [—1; 1], wherep, = 1 would be the best possible
value, since it means that both EOFs are “parallel” and painn the same “direction”. The
correlation coefficients for #3, #7 and #26 are also statédgs. 11 — 13. In case of experiments
#3 and #7 the EOFs of the simulations with grids C2, C3 and CGrespond relatively well to
the EOFs obtained from the laboratory measurements, wéthitfhest grid resolution yielding
the highest correlations. The relatively small change efdbrrelation from grid C3 to C4 might
indicate that these values are already close to a limit viduéhe number of grid cells going
to infinity. Some of the structural differences in the EOFglmibe explained by the fact that
the horizontal temperature cross sections of the simula@oe35 mm lower than the laboratory
fluid surface measurements. The lowest resolved simulatitmN gy x N, x N, = 15x10x 12, is

no longer able to properly reproduce the leading patternai@ébility. The results from ALDM
and CD on grid C3 are relatively close to each other for #3 and lth case of experiment

#26 most simulation variants show a baroclinic wave of afirmumode number 3 instead
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of the experimentally observed wave 4. Using grid C4, theutations reproduce the correct
wave number (with ALDM and CD). The simulation with grid C3able to show wave 4 only
combined with ALDM (see Fig. 13d).

Another finding is that the variance accounted for by EOF lys&tesnatically higher in
the simulations than in the laboratory measurements cerisgithose cases where there is a
significant correlation between the EOF patterns from theratory measurements and from the
simulations. Increasing the grid resolution yields onlylighg improvement in case of #7 and
#26 and no improvement in case of #3. Assuming the numeritatisn to converge more or
less smoothly towards the continuum solution with incnegsjrid resolution, this might indicate
that the remaining discrepancy between the variances andtad difference in the EOF patterns
revealed by the correlation coefficient are for the most pattdue to physical processes not
or insufficiently resolved in the model (e.g. in the boundamers). It might be rather due to
processes not included in the model. The heat exchange éxetive water and the overlying air,
not present in the model, might be one of the processes whigdsponsible for the observed
differences.

Assuming the PCA to be an adequate tool of comparison, welwdadhat the overall
agreement between experimental and numerical data is girgmEspecially employing ALDM

is apparently improving the flow simulation.

4 Conclusion

Two finite-volume models with implicit subgrid-scale parerization for the simulation of

the differentially heated rotating annulus have been desdrand discussed. The first model,
the cylindrical flow solver with implicit turbulence mod@tylFloit), integrates the Boussinesq
equations in cylindrical coordinatesARNELL and R.umB, 1975, 1976). The other model,

INCA, solves the Boussinesq equations on block structuredllly refined Cartesian grids and
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uses a conservative immersed boundary methaeMik et al., 2010a,b) to represent the annulus
geometry. Both models employ tielaptive Local Deconvolution MethddLDM) (H ICKEL
et al., 2006; RMMLER and HCKEL, 2013; REPERet al., 2013) for parameterizing the effects

of turbulent subgrid-scale stresses in the framework ofrdimear finite-volume discretization.

For the model validation we made a qualitative comparisdwéen 26 laboratory experi-
ments, which differed in their angular velocity but shareel 6ther physical parameters, and the
corresponding simulation results of INCA and cylFloit. Guemison criteria were the azimuthal
mode number of the dominant baroclinic wave in all 26 experita and the leading patterns of
variability of horizontal temperature cross sections ireéhselected experiments. The observed
flow regime ranged from an azimuthally symmetric state witbaroclinic waves, over the reg-
ular to the irregular baroclinic wave regime. Two simulati@riants were tested: The first with
a uniform angular velocity throughout the entire integrafiwhich consists of an azimuthally
symmetric simulation in order to compute the thermal backgd state, followed by the full
3-D simulation of baroclinic waves. The second variant iserstrongly based on the laboratory
procedure, with zero angular velocity during the azimuthsgymmetric simulation and a sub-
sequent spin-up period in which the angular velocity iséased to its final value. Deviations
between simulation and experiments can be expected dugdoatecasons. The largest errors
could certainly originate from the numerical model, e.gbdundary layers are not resolved ad-
equately. This is here clearly the case in the cylFloit satiahs. Nonetheless, both simulation
variants were generally in good agreement with the laboyaxperiments and differed at most
by one mode number from the experimentally observed aziahatbde number in case of INCA
and by two mode numbers in case of cylFloit. However, thesg@simulation variant including
spin-up was in some cases closer to the experiment and bepieduced the transitions from
the axisymmetric to the regular wave regime and from thelegda the irregular wave regime.

Some simulations including spin-up showed a transitiomfem azimuthal mode number also
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observed in the experiment to the next higher mode numbena¢ $ime during the integration.

The different mode numbers in simulations with and withquihsup might be explained
by the existence of multiple equilibria which is supportgddboratory and numerical hysteresis
experiments (Wcze et al., 2014). We considered also an alternative persgduyidetermining
the dominant baroclinic wave mode of the linearized dynanoic the azimuthally averaged
backgrounds in the simulations with and without spin-up.isTdnalysis showed that the two
backgrounds can have dominant linear modes with differanmathal mode numbers which then
might lead to the observed difference in the fully nonlinearoclinic waves in the simulations
with and without spin-up.

A principal component analysis (PCA) was used to compare saries of horizontal cross
sections of the temperature from the laboratory measurenaen the simulations in terms of
leading patterns of variability. The PCA was applied to ¢hddferent experiments. The results
showed that the simulations were generally in good agreemiémthe laboratory experiments
and this agreement was improved to some extend by incredglsengrid resolution. The
improvement from the second highest to the highest usedrgsiolution was relatively small,
which might indicate that a large part of the remaining dipancies between the laboratory
experiment and the simulation is not due to an insufficieid gesolution, but rather due to
physical processes not included in the numerical modets) s the heat exchange between
water and the overlying air.

The PCA also showed that the use of ALDM improves the agreemiti the experiment

compared to simulations using no subgrid-scale paramatern.
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A Appendix

A.1 Governing equationsin cylindrical coordinates

Projecting the momentum equation (2.7) onto the three dyitial unit vectorsey, e,., ande.,

yields:

wherev = uey + ve, + we, is the velocity vector. Here the cylindrical coordinateneémts

08 = 0gq Of the viscous stress tensor, defined via:

g = aalgeaeg (12)

are

099 OYr Oyz r O r r O rar r r 00 0z
_ 0 /u 10v ov ow Ov
r rr rz =v a \ = —aa I, . 9~ (13)
aro. G0 "or (r) r oY or or o
09 O o @ + l(“)_w @ + a_w 26_10
2 zr  Ozz 0z  r o 0z  Or 0z
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and they also yield the cylindrical coordinate viscous-reatnm-flux vectors:

Oq = 0aBER. (14)

The continuity equation (2.10) reads:

_10u 10 ow

v 0z

The flux divergences in the thermodynamic equation:

%—f = -V .(vT)+ V- (kVT) (1.6)

can be expressed analogously to (1.5). The temperatureegtadads:

10T oT oT
VT = ;%6194—5&4—56? a.7)

A.2 Governing equationsin Cartesian coordinates

Here the horizontal polar coordinatg$, r) are replaced by their Cartesian equivaleptsy).
The components of the momentum equation in Cartesian cuatel are then obtained by

projecting (2.7) onto the three unit vecters, e,, ande:

0%zp |
@ = -V . (vu+pey —az)+2Qu + P d0 O , (1.83)
ot 2 ais
O + y (1)
dt
Q%yp |
s = -V - (vv+pey —oy) —2Qu + ’ a0 ® , (1.8b)
ot 2, _ °°
Q%y (1))}
dt
ow . .
5 = V- (vw+pes —0z) —gp, (1.8¢)
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wherev = ue, + vey + we,, is the velocity vector. The elements of the viscous strassoie

are:

5 @ ov Ou Ow Ou

Ozx Ozy Ozz ox % 8_1/ 8_x %
| Qe 00 O dw Oy (1.9)
Tye Tyy  Ty= dy Ox Oy dy 0Oz .
o o o @ + 8_11) @ + 8_11) 28_11)
e T dz Ox 0z Oy 0z
The continuity equation (2.10) reads:
Ju Ov Ow
= —+ — +— =0. 1.10
V.v I + By + B ( )

Expressing the temperature gradient in the thermodynaquaten (1.6) in Cartesian coordi-

nates yields:

.. (1.11)

s A.3 Volume averaged governing equations

The numerical models INCA and cylFloit use a finite-volumscdétization of the governing
equations. For this purpose the equations are averagedaayid cell volume. This way the
z-component of the momentum equation (1.8a), e.g., becoones$e II:

ou 1 dQ
v_ - dS - (vu + peg — 04) + 200 + Q%% + —7, (1.12)

ot dt
ov

s where(r) = & [y (-) dV denotes the volume average over a grid cell volume: AzAyAz
7 (see table 2 for the grid cell sizesx, Ay and Az). The divergence theorem was used to

sss  transform the volume integrals of divergences into fluxgnéés over the volume surfa¢d/,
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wheredsS is the surface element vector pointing outward. The oth&eguong equations are
treated in the same way.

As an example in cylindrical coordinates, the volume averag1.1a) for case Il is shown

ou 1 uv 1 .
E—-v%dS‘UU-(7)-v%dS’p6ﬂ
oV ov

1 Toor\ _dQ_
+Vy{d5-019+( . )—291}—57“, (1.13)
oV

where the grid cell volume reads now = r . AYArAz, with r. = rmin + Ar/2 the mean
radial distance of the cell from the rotation axis. A cylima@t grid cell is shown in Fig. 3c
and its sizes are listed in table 4. With the exception of theeative fluxes, all right-hand-side
terms of the volume averaged governing equations are tisedeusing standard second-order
accurate finite-volume techniques: The midpoint rule isluseapproximate volume and surface

integrals. Averages of products become products of aversgéhat, e.g., the second term on

the right-hand side of equation (1.13) is approximated/r) ~ uv(1/r). Spatial derivatives
appearing in the elements of the stress tensor are computednral differences and values
required but not defined at a certain position are interpdiiearly (e.g., ERzIGERand FERIC,
2008). The ability of implicit subgrid-scale parametetiaa is achieved by using ALDM for the

reconstruction of the advective fluxes, e@'ﬂ%v dS - vu in equation (1.12).
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Table 1. Coefficients for the temperature-dependent parametizadf density, kinematic viscosity and thermal
diffusivity of water. The coefficients have been obtainedableast-square fit to the data shown in Fig. 2. Standard
deviations are given as well.

coefficient || densityp | kinematic viscosity | thermal diffusivity s

o (1000.79 £ 0.09) x 107 & (1.584 + 0.02) mm? (1.3384 + 0.0004) x 10~} mm?
B ~(5.7£0.6) x 1071 L& | (325 +0.1) x 1072 =z (5.19 £ 0.03) x 104 mz2
v ~(3.9+0.1) x 10712 ke | (23+0.1) x 1071 =) ~(1.86 % 0.03) x 1076 mm>

Table 2: Grid characteristics for the INCA simulations

grid# | blocks | cells | Azymin [mm] | Azymae [mm] | Azpin [mm] | Azpae [mm]
11 44 863280 1.54 4.63 0.25 3.2
12 175 2185920 0.51 4.63 0.25 3.2
13 171 2954880 0.51 1.54 0.25 3.2

Table 3: Physical parameters of the validation experiments.

- inner radiusga: 45 mm

- outer radiush: 120 mm

- fluid depth,d: 135 mm

- inner wall temperaturel, : 24°C

- outer wall temperaturel’,: 32°C

- working fluid: de-ionized water

Table 4: Grid characteristics and spin-up periods for the cylFlorda-

tions.
Ny x N, x N, bAY [mm]  Ar[mm] Az [mm]
- grid C1: 15 x 10 x 12 50.27 7.5 11.25
- grid C2: 30 x 20 x 25 25.13 3.75 5.4
- grid C3: 60 x 40 x 50 12.57 1.88 2.7
-gridC4: 120 x 80 x 150 6.28 0.94 0.9

- spin-up periods:

# 7 s) # T [s] # 7 [s] # T [s] # T [s]

1 20 7 20 13 180 19 360 25 720
20 8 20 14 210 20 390 26 910

20 9 20 15 240 21 410

20 10 20 16 260 22 440

20 11 20 17 300 23 460

20 12 20 18 330 24 500

o g wWN

1 Experiment number
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Table 5: Azimuthal mode number obtained in INCA and cylFloit simidas with and without spin-up. Mode numbers that
do not match the experiment are set in parentheses. In@uditie values of the Burger numbBr. which is related to the
thermal Rossby numbdto;;, = 4Bu, the Taylor numbef’a and the thermal Reynolds numhRe,,, are listed.

dimensionless mode numbers
numbers INCA cylFloit
experiment# Q [rp.m.] | Bu Ta Reyp, experiment| grid [1 grid 12 grid I1 spin-up | no spin-up with spin-up
1 2.99 1.33 9.44x 10° 5477 0 0 0 0
2 3.53 0.95 1.32x 107 4633 2 2 (0) (0)
3 4.04 0.73 1.72x 107 4053 2 2 2 (0) 2
4 45 0.59 2.14x 107 3640 2 3) 2 (0) 2
5 5.01 0.47 2.66x 107 3265 2 @) @3)
6 541 0.4 3.1x107 3023 3 3 3 3
7 6 0.33 3.8x107 2730 3 3 3
8 6.48 0.28 4.44x 107 2525 3 3 3 3 3 3
9 7.02 0.24 5.2x107 2332 3 3 3 3 3
10 7.5 0.21 5.94x 107 2184 3 (4) 4) 3 3
11 7.98 0.19 6.73x 107 2051 3 (4) 4) 3 3 4)
12 8.5 0.16 7.63x 107 1926 4 @3) 4
13 9 0.15 8.55x 107 1820 3 4) 4)
14 9.5 0.13 9.54x 107 1723 3 (4) (4) (4) 3 3
15 9.96 0.12 1.05x 10% 1644 3 (4) 3
16 10.8 0.1 1.23x10% 1516 3 (4) 3
17 11.3 0.09 1.35x10°% 1449 3 (4) 3
18 12 0.08 1.52x10% 1364 3 (4) 4) 4) 4)
19 12.48 0.08 1.65x10% 1312 3 4) 4)
20 13.02 | 0.07 1.79x10% 1258 4 4 4 @3)
21 1353 | 0.06 1.93x10% 1210 3 (4) (4)
22 13.98 | 0.06 2.06x10% 1171 3 (4) 4) (5) (4)
23 15.01 0.05 2.38x10% 1091 3 4) 4)
24 15.99 0.05 2.7x10% 1024 3 4) 4) 4)
25 19.99 0.03 4.22x10% 819 4 (5) 4
26 25.02 0.02 6.61x10% 654 4 4 4 4 4
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Figure 1: Schematic view of the differentially heated rotating amsul
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Figure 2: Temperature dependence of dengit\kinematic viscosity and thermal diffusivityx for water at a pressure

of 1 bar. The marks (cross, triangle and rhombus) indicate takulileadues from \EREIN DEUTSCHERINGENIEURE
et al. 2006, Section Dba 2. In addition, the best-fit parabata plotted, using the coefficients listed in table 1.
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Figure 3: (a) Top view of the regular, cylindrical finite-volume grifleylFloit (the dotted lines mark the grid cell walls).
(b) Vertical cross section of the grid. (c) A finite-volumeadycell with azimuthal, radial and vertical side lengths),
Ar andAz, and grid indices, j, k. (d) Volume averaged variables arranged on a C-grid.
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(b) grid 12

(a) grid 11

(c) grid 13

Figure 4: Top views on the computational grids used in the INCA simoiest
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azimuthally full 3D-simulation
symmetric simulation

Figure5: Dependence of the angular veloci®on timet. Two variants are investigated during the model validatibime
first classical variant (dashed line) assumes a constantamgelocity(2 ; throughout the entire simulation (azimuthally
symmetric 2-D simulation up to tim& p followed by the full 3-D simulation). In the second variasblid line) Q2 is set
to zero during the azimuthally symmetric simulation, faled by a spin-up period of length after which the constant
€ is reached. This second variant is closer to the laboratagtipe.

(a) #3: experiment (b) #3: simulation without spin-up (c) #3: simulation with spin-up

Figure 6: Temperature fields ifC from the laboratory measurement and the cylFloit 3-D sitmuta of experiment
#3 (2 = 4r.p.m.) showing the fully developed baroclinic waves. (a) showsragerature measurement at the fluid
surface £ = d = 135mm) in the laboratory experiment at a representative time. fEngperature from the first
simulation variant without spin-up is depicted in (b), anadnfi the second variant with spin-up in (c). Both are in the
planez = 100 mm at time¢ = 10800s (3h). The contour interval i$.5°C. To emphasize the baroclinic wave,
temperature values lower thdh;, are shaded in grey, whetlg;, = 28.5°C in (a) andl};, = 31°Cin (b) and (c). The
simulations were performed using a grid resolutioMNgf x N, x N, = 60 x 40 x 50.
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(a) #7: experiment (b) #7: simulation without spin-up (c) #7: simulation with spin-up

Figure 7: As Fig. 6, but now for experiment #% = 6r.p.m.). The contour interval i9.5 °C. Temperature values
lower thanT};, = 31 °C are shaded in grey.

(a) #26: experiment (b) #26: simulation without spin-up (c) #26: simulation with spin-up

Figure8: As Fig. 6, but now for experiment #26)(= 25 r.p.m.). The contour interval i8.5 °C. Temperature values
lower thanT};, are shaded in grey, whefg;, = 30.5°C in (a) and7};, = 31 °Cin (b) and (c).
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(c) #16: linearized model/ (d) #16: linearized model/ (e) #16: linearized model/
background: no spin-up/= t2p background: no spin-up/> t2p background: with spin-up

Figure 9: (a) and (b) as Fig. 6b and 6c, but here for experiment #16< 10.8 r.p.m.). Temperature values lower
than31 °C are shaded in grey. (c), (d) and (e) show temperature modamet from a linearized version of cylFloit at
z = 100 mm in arbitrary units (regions with negative values are shadeptey). (c) is the fastest growing mode on the
baroclinically unstable, azimuthally symmetric initisddkground of the simulation variant without spin-ug at tsp.

(d) is the least damped mode on the baroclinically stabl&dracnd obtained from an azimuthal average of the fully
developed nonlinear flow of the simulation variant withopihsup of which the temperature is shown in (a). (e) is the
least damped mode on the background obtained from an azhankrage of the flow of the simulation variant with
spin-up of which the temperature is shown in (b).
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(C) #26:60 x 40 x 50/CD (d) #26:120 x 80 x 150/ALDM

Figure 10: Temperature fields from cylFloit 3-D simulations of expegimh#26 using different numerical set-ups, all of
which are initialized with spin-up. (a) shows the resulifrgrid C1 (Ny x N,- x N, = 15x 10 x 12, see table 4) and (b)
from grid C2 Ny x N, x N> = 30 x 20 x 25). (c) is obtained from grid C3Yy x N, x N> = 60 x 40 x 50), where
central differences (CD) instead of ALDM were employed tonpaite the advective fluxes (so no particular subgrid-
scale parameterization is used in these simulations). @hdtrfrom the highest grid resolution C¥ § x N, x N, =

120 x 80 x 150) is depicted in (d). All cross sections are at height 100 mm at time¢ = 10800 s in case of (a), (b)
and (c) and. = 3300s in case of (d). Contour intervals ae2 °C for (a) and0.5°C for (b, ¢, d). To emphasize the
baroclinic wave, temperature values lower tHap are shaded in grey, whef@; = 29.8°C in (a),T;, = 30.5°Cin

(b) andT};, = 31°Cin (c) and (d).
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(C) #3:30%x 20 x 25/ALDM
var.: 25.6 % var.: 32.5 % var.: 40.3 %
corr.: 1 corr.: 0.04 corr.: 0.86

~

(d) #3:60 x 40 x 50/ALDM (e) #3:60 x 40 x 50/CD (f) #3:120 x 80 x 150/
var.: 33.5 % var.: 34.6 % ALDM
corr.: 0.9 corr.: 0.9 var.: 37.6 %
corr.: 0.91

Figure 11: The first empirical orthogonal function (EOF 1) resultingrfr a principal component analysis of time series
of the temperature field of experiment #3 & 4r.p.m.). (a) shows EOF 1 from the laboratory measurements. (b) to
(f) are the EOFs from the cylFloit 3-D simulations, where tiaptions state the different grid resolutions and advectiv
flux schemes used, following the pattei¥iy x N, x N./flux scheme (either tha@daptive Local Deconvolution Method
(ALDM), or central differencegCD)). In addition the variance (var.) EOF 1 accounts for &mel correlation (corr.)
with the EOF from the laboratory measurements (a) are stateel EOFs are plotted in arbitrary units and regions with
negative values are shaded in grey.

(a) #7: experiment (b) #7:15x 10x 12/ALDM (C) #7:30x 20 x 25/ALDM
var.: 28.7 % var.: 40.7 % var.: 43.2 %
corr.: 1 corr.: 0.6 corr.: 0.85

\

(d) #7:60 x 40 x 50/ALDM (e) #7:60 x

40 x 50/CD (f) #7:120 x 80 x 150/
var.: 41.2 % var.: 41.7 % ALDM
corr.: 0.86 corr.: 0.87 var.: 39.5 %

corr.: 0.88

Figure 12: Asin Fig. 11, but now for experiment #72(= 6 r.p.m.).

52



(@) #26: experiment (b) #26:15 x 10 x 12/ (C) #26:30 x 20 x 25/

var.: 9.8 % ALDM ALDM
corr.: 1 var.: 17.6 % var.: 10.9 %
corr.: 0.02 corr.: 0.12

(d) #26:60 x 40 x 50/ (e) #26:60 x 40 x 50/CD
ALDM var.: 18.4 % ALDM
var.: 35.2 % corr.: 0.07 var.: 31.6 %
corr.: 0.78 corr.: 0.75

Figure 13: Asin Fig. 11, but now for experiment #28(= 25r.p.m.).

(@) grid 11 (b) grid 12 (c) grid 13

Figure 14: Temperature contours (interval 0@) for experiment #14 = 9.5r.p.m.) simulated with INCA on three
different computational grids. The result is shown at sated timet = 750 s in the planez = 67.5 mm.
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(@t="175s (b) t =90s (c)t=150s

Figure 15: Temperature contours (interval 0G) in the planez = 67.5mm for experiment #10¢¢{ = 7.5r.p.m.)
simulated with INCA without spin-up simulation.

(@t =680s (b)t =7475s (c)t=815s

Figure 16: Temperature contours (interval 0G) in the planez = 67.5mm for experiment #10¢¢ = 7.5r.p.m.)
simulated with INCA with a spin-up time of 200 s after a nomatmg period of 200 s.
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