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ABSTRACT

3



As present weather-forecast codes and increasingly many atmospheric cli-

mate models resolve at least part of the mesoscale flow, and hence also inter-

nal gravity waves (GWs), it is natural to ask whether even in such configura-

tions sub-gridscale GWs might impact the resolved flow, and how their effect

could be taken into account. This motivates a theoretical and numerical in-

vestigation of the interaction between unresolved sub-mesoscale and resolved

mesoscale GWs, using Boussinesq dynamics for simplicity. By scaling ar-

guments, first a subset of sub-mesoscale GWs that can indeed influence the

dynamics of mesoscale GWs is identified. Therein, hydrostatic GWs with

wavelengths corresponding to the largest unresolved scales of present-day

limited-area weather forecast models are an interesting example. A large-

amplitude WKB theory, allowing for a mesoscale unbalanced flow, is then

formulated, based on multi-scale asymptotic analysis utilizing a proper scale-

separation parameter. Purely vertical propagation of sub-mesoscale GWs is

found to be most important, implying inter alia that the resolved flow is only

affected by the vertical flux convergence of sub-mesoscale horizontal momen-

tum at leading order. In turn, sub-mesoscale GWs are refracted by mesoscale

vertical wind shear while conserving their wave-action density. An efficient

numerical implementation of the theory uses a phase-space ray tracer, thus

handling the frequent appearance of caustics. The WKB approach and its

numerical implementation are validated successfully against sub-mesoscale

resolving simulations of the resonant radiation of mesoscale inertia GWs by a

horizontally as well as vertically confined sub-mesoscale GW packet.
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1. Introduction42

Internal gravity waves (GWs) play a significant role in atmospheric dynamics on various spatial43

scales (Fritts and Alexander 2003; Kim et al. 2003; Alexander et al. 2010; Plougonven and Zhang44

2014). Already in the lower atmosphere GW effects are manifold. Examples include the triggering45

of high-impact weather (e.g. Zhang et al. 2001, 2003) and clear-air turbulence (Koch et al. 2005),46

as well as the effect of small-scale GWs of orographic origin on the predicted larger-scale flow (e.g.47

Palmer et al. 1986; Lott and Miller 1997; Scinocca and McFarlane 2000) and the GW impact on the48

generation of high cirrus clouds and polar stratospheric clouds (e.g. Joos et al. 2009). Even more49

conspicuous than in the lower atmosphere, however, are GW effects in the middle atmosphere. The50

general circulation in the mesosphere is basically controlled by GWs (Lindzen 1981; Holton 1982;51

Garcia and Solomon 1985). This also seems to be of relevance to both medium-range weather52

forecast and climate modeling in the troposphere. Middle-atmosphere circulation influences the53

lower layers by downward control (Haynes et al. 1991), and there is evidence of the importance54

of the middle atmosphere for long-range forecasting of winter weather (Baldwin and Dunkerton55

2001; Kidston et al. 2015; Hansen et al. 2017; Jia et al. 2017) and climate (Scaife et al. 2005,56

2012) in the northern hemisphere.57

As a substantial portion of the GW spectrum involves scales too small to describe explicitly58

in current-resolution climate models, accounting for such small-scale GWs poses an important59

parameterization problem to atmospheric dynamics. With rising computing power available, an60

increasing number of studies of middle-atmosphere global GW dynamics uses models that can61

resolve a part of the GW spectrum (Kawatani et al. 2009, 2010a,b; Brune and Becker 2013). This62

raises the question whether the neglected sub-gridscale (SGS) GWs could impact the resolved63

flow; and, if so, how their effect could be taken into account. In regard to these issues, to the best64
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of our knowledge, global weather-forecast codes, with horizontal mesh distances of O(10 km) still65

generally use a parameterization of SGS GWs, while high-resolution local-area codes used by the66

weather services, with mesh distances of O(1 km), typically do not. Since the ‘effective resolution’67

in such codes is well above their mesh distances (Skamarock 2004; Ricard et al. 2013), one might68

suppose that even there a considerable portion of the GW spectrum is not captured. However, a69

systematic investigation of the potential impact of SGS GWs on the resolved mesoscale flow is70

lacking at present.71

Available GW parameterizations (e.g. Lindzen 1981; Palmer et al. 1986; McFarlane 1987;72

Alexander and Dunkerton 1999; Warner and McIntyre 2001; Scinocca 2003; Orr et al. 2010)73

invariably rely on WKB theory (Bretherton 1966) for describing the interaction between scale-74

separated waves and (resolved) mean flow. However, the specific implications of this theory may75

depend on the scales involved. The classic scenario is the interaction between a resolved synoptic-76

scale flow and unresolved mesoscale inertia GWs. The corresponding WKB theory (Grimshaw77

1975; Achatz et al. 2017) as well as the generalized Lagrangian-mean theory (Andrews and McIn-78

tyre 1978a,b; Bühler 2009) show that the wave amplitude is controlled by wave-action conserva-79

tion, while the synoptic-scale flow is described by a quasi-geostrophic potential vorticity that is80

affected by the GWs via pseudomomentum-flux convergence. For efficiency reasons, parameteri-81

zations use these theoretical results with drastic simplifications: (i) lateral GW propagation and the82

impact of horizontal mean-flow gradients are ignored; and (ii) the time-dependent transient wave83

mean-flow interaction is replaced by an equilibrium picture where, due to the non-acceleration84

paradigm, GWs can only modify the resolved flow when they break. In the present context espe-85

cially the latter steady-state approximation may not be entirely justified. As pointed out by Bühler86

and McIntyre (1998, 2003, 2005) wave transience is potentially important, and recently Bölöni87

et al. (2016) have shown that in many cases it can attain at least an equally important role as tur-88
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bulent wave breaking in mediating the impact of GWs on the resolved flow. It is also essential to89

keep in mind that the standard WKB approach assumes from the outset geostrophic and hydro-90

static balance of the synoptic-scale flow. It is therefore not obvious that this theory can be applied91

to the interaction between a mesoscale resolved flow and mesoscale or sub-mesoscale SGS GWs,92

which seems to be the most appropriate scenario for GW parameterizations in mesoscale-resolving93

models. In this setting, a modified WKB theory that allows for a mesoscale unbalanced large-scale94

flow, would be most useful.95

Of related interest is that packets of small-scale GWs are capable of radiating larger-scale GWs.96

This possibility was first suggested by Bretherton (1969) for two-dimensional small-scale GW97

packets with isotropic scaling, and more recently has been investigated further by Van den Bremer98

and Sutherland (2014) for wave packets of various aspect ratios. The radiation of large-scale waves99

hinges on a resonance mechanism, wherein the vertical phase velocity of the emitted long waves100

matches the vertical group velocity of the small-scale wave packet, which acts as a traveling wave101

source. Furthermore, the vertical wave number of the long wave is set by the scale of the wave102

packet envelope. In a related study Tabaei and Akylas (2007) show that the long-wave radiation103

process is especially enhanced if the small-scale wave packet is ‘flat’ (i.e. its envelope is elongated104

in the horizontal relative to the vertical) so that both the horizontal and vertical envelope scales105

can be compatible with free, nearly steady, long GWs. All of these studies assume the small-scale106

GWs to be non-hydrostatic. They do not investigate, however, which small-scale GWs in general107

are able to interact with given mesoscale long GWs.108

Moreover, no prior study examines the feasibility of a model for SGS GWs in a resolved109

mesoscale flow. Closest to this comes the WKB model of Tabaei and Akylas (2007). These110

authors, however, report numerical instability problems once the wave mean-flow interaction de-111

velops caustics where the initially locally monochromatic small-scale GW field exhibits multival-112
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ued wave numbers. This problem, also observed by Rieper et al. (2013a), can be circumvented,113

however. As shown by Muraschko et al. (2015) and Bölöni et al. (2016), a spectral approach based114

on phase-space wave-action density yields numerically stable and fast algorithms for the efficient115

integration of the coupled equations of small-scale GWs in a larger-scale flow.116

Building on the above brief review of related prior literature, the goals of the present paper117

are: (i) a systematic investigation of which smaller-scale GWs are able to interact resonantly118

with given typical mesoscale GWs; (ii) the development of a WKB theory for the efficient de-119

scription of this interaction; (iii) the implementation of a numerical algorithm for this theory;120

and finally (iv) the validation of the WKB theory and its numerical implementation against sub-121

mesoscale resolving simulations of the radiation of mesoscale GWs by horizontally and vertically122

confined sub-mesoscale GW packets as considered earlier by Bretherton (1969), Van den Bremer123

and Sutherland (2014) and Tabaei and Akylas (2007).124

The paper is structured as follows. The GW scales of interest are identified in sections 2a125

and 2b; these scales form the basis for nondimensionalizing the Boussinesq equations and for-126

mulating an appropriate multi-scale asymptotic ansatz in section 2c. Leading- and next-order127

WKB approximations are discussed in section 2d, which eventually yield (section 2e) a coupled128

energy-conserving equation system of linear Boussinesq equations for the mesoscale, and one-129

dimensional ray equations for the sub-mesoscale dynamics. Subsequently, our numerical models130

are described in section 3; the initial conditions of the numerical experiments are motivated in131

section 4a, and section 4b briefly discusses the postprocessing of the model output data. In sec-132

tion 4c, a kinematic analysis similar to ship wake theory is used to predict the geometry of the133

induced mesoscale wave disturbance, on the assumption of steady-state forcing by a propagating134

sub-mesoscale GW packet. In section 4d, the simulation results of different test cases are presented135
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and compared against the theoretical predictions. Finally, the article concludes with a summary136

and discussion of the main findings in section 5.137

2. Theory - Basics and formalism138

For simplicity the interaction between mesoscale and sub-mesoscale GWs is studied in a rotat-139

ing, incompressible and inviscid Boussinesq atmosphere with height-dependent background strat-140

ification, characterized by Coriolis parameter f and Brunt-Väisälä frequency N(z). Under these141

flow conditions, the governing equations are142

Dv
Dt

+ f ez×u = −∇p+bez (1)

Db
Dt

+N2w = 0 (2)

∇ ·v = 0 , (3)

where D/Dt = ∂/∂ t+v·∇ is the material derivative, ez denotes the unit vector pointing upwards, v143

is the full and u the horizontal velocity vector, while w stands for the vertical velocity component.144

Furthermore, p and b are the density-weighted pressure deviation and the buoyancy deviation,145

respectively, from a reference atmosphere with stratification N2(z), generally slowly varying in146

the vertical. These equations can capture essential aspects of local dynamics at various scales, as147

long as the vertical length scale of the waves is smaller than the atmospheric density scale height.148

a. Wave scaling149

In the following a (resolved) mesoscale flow interacting with (unresolved) smaller-scale motions150

is considered, termed ‘sub-mesoscale’ for simplicity. The question arises which, if any, sub-151

9



mesoscale motions are able to leave an impact on the mesoscale flow. Here this issue is addressed152

by considering possible interactions between a mesoscale and a sub-mesoscale GW.153

The mesoscale GW (subscript m) is taken to have horizontal and vertical length scales Lm and154

Hm, respectively, with an aspect ratio of the order155

am =
Hm

Lm
=

f
N∗

, (4)

where N∗ is a characteristic value of the Brunt-Väisälä frequency N, so that the mesoscale intrinsic156

frequency ω̂m is equally affected by rotation and stratification, as follows from the general GW157

dispersion relation158

ω̂
2 =

f 2m2 +N2(k2 + l2)

k2 + l2 +m2 . (5)

Here, N2 = O(N2
∗ ) is meant to be the local value of the stratification, k and l are the horizontal and159

m the vertical wave vector components, so that Lm = O(1/
√

k2
m + l2

m) and Hm = O(1/mm). These160

scaling assumptions are met, for instance, in the case where the horizontal and vertical scale are161

smaller by a synoptic-scale Rossby number than the Rossby deformation radius and the vertical162

scale height, respectively; in such situations one can take (Hm,Lm) = (1,100) km (Achatz et al.163

2017). The sub-mesoscale wave (subscript w) has shorter vertical and horizontal scales Hw and164

Lw, respectively, satisfying165

(Hw,Lw) = (ηHm,η
pLm) (6)

with η � 1 a small parameter and p > 0, so that the sub-mesoscale aspect ratio is of the order166

aw =
Hw

Lw
= η

1−p f
N∗

. (7)
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The respective wave amplitudes are chosen as large as possible while keeping the analysis167

tractable. Hence the sub-mesoscale wave is assumed to be at the margin of static instability, where168

db/dz = O(N2), so that the buoyancy-amplitude scale is169

Bw = HwN2
∗ , (8)

implying vertical displacements of the order of the sub-mesoscale vertical scale. As for the170

mesoscale flow, if a marginally statically stable buoyancy amplitude is assumed, it turns out that171

the sub-mesoscale-wave frequency ω = ω̂ + kwh · um - with kwh indicating the horizontal sub-172

mesoscale wave vector and um representing the mesoscale horizontal wind - is dominated by the173

Doppler term due to the strong mesoscale-flow horizontal winds, while the intrinsic frequency ω̂174

is relatively small; as a result, sub-mesoscale motions are mainly transported by the mesoscale175

flow in such a regime. For this reason, the mesoscale buoyancy-amplitude scale is restricted to176

satisfy177

Bm = ηHmN2
∗ = Bw , (9)

that actually agrees with the sub-mesoscale buoyancy-amplitude scale.178

The remaining scales of interest follow from the buoyancy equation (2) and the continuity equa-179

tion (3), with the material derivative scaling with the intrinsic frequency, which provides the in-180

verse time scale. Specifically, the buoyancy equation yields a mesoscale vertical-wind scale:181

Wm =
f Bm

N2
∗

= η f Hm . (10)
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From the continuity equation follows a mesoscale horizontal-wind scale182

Um =
WmLm

Hm
= η f Lm , (11)

and one also notes for later reference that the mesoscale time scale is Tm = 1/ f . Likewise one183

obtains for the sub-mesoscale horizontal- and vertical-velocity scales184

Uw =
WwLw

Hw
=

Lw

Hw

Ωw

f
Wm =

Lw

Hw

Ωw

N∗
Um = η

p−1 Ωw

f
Um (12)

Ww =
ΩwBw

N2
∗

= ΩwHw =
Ωw

f
Wm , (13)

where Ωw is the scale-dependent sub-mesoscale intrinsic-frequency scale. From the dispersion185

relation (5), to a good approximation,186

Ωw(aw) =


f , aw ≤

f
N∗

N∗aw,
f

N∗
< aw ≤ 1

N∗, aw > 1

. (14)

Of these, the last, strongly non-hydrostatic regime is generally modulationally unstable (Suther-187

land 2001) and hence not considered here.188

b. Regimes of interaction between mesoscale and sub-mesoscale motions189

Decomposing the total flow into mesoscale and smaller-scale sub-mesoscale motions, (v,b) =190

(vm,bm)+(vw,bw), it is expected that the latter can only influence the former via flux-convergence191

terms. For such an interaction to be possible, these terms must be of the same magnitude as192

(or larger than) the leading mesoscale terms in the governing equations. To meet this condition,193
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sub-mesoscale wave fields are considered, with scaling as introduced above, that are spatially194

modulated on the mesoscale, in response to the two-way interaction between mesoscale and sub-195

mesoscale flow. As explained in the Appendix, it is then possible to identify a sufficiently scale-196

separated regime, where sub-mesoscale motions may interact significantly with mesoscale GWs.197

In this regime the small-scale GWs lie in the mid-frequency range f/N∗ < aw ≤ 1, and their scale198

separation is obtained by setting p = 2.199

Specifically, incorporating this finding in (7) leads to a sub-mesoscale aspect ratio200

aw =
f

ηN∗
. (15)

For the mid-frequency range f/N∗ < aw ≤ 1 this implies, under the requirement of a sufficiently201

strong scale separation η � 1,202

f
N∗
≤ η � 1 . (16)

According to (6), this scaling bears a stronger scale separation in the horizontal than in the vertical203

(Hw,Lw) =
(
ηHm,η

2Lm
)
. (17)

In keeping with equations (15) and (16), aw = ηq is put, where q≥ 0, so that204

η =

(
f

N∗

) 1
1+q

. (18)

While, asymptotically, q ≥ 0 is a free parameter, for atmospheric applications where f/N∗ =205

O(10−2), a sufficiently scale-separated general scaling regime can be identified in the finite range206
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0≤ q≤ 1. In view of (17) and (18), two characteristic limit cases thus arise207

q = 0 : η =
f

N∗
, Hw = Lw =

f
N∗

Hm (19)

q = 1 : η =

√
f

N∗
, Hw =

√
f

N∗
Hm, Lw =

f
N∗

Lm . (20)

The first (non-hydrostatic) limit case is the one also discussed by Tabaei and Akylas (2007). Here208

the scale separation is quite large and the mesoscale-wave amplitude that can be affected is rather209

small. The most interesting case for atmospheric applications is the second (hydrostatic) limit, for210

which the mesoscale-wave impact is the strongest. For instance, taking (Hm,Lm) = (1,100) km211

and f/N∗ = 10−2, from (20) is then found that (Hw,Lw) = (0.1,1) km. Notably, this scale esti-212

mate is in good agreement with present-day local-area weather-forecast-code mesh distances (see213

section 1).214

For later reference, table 1 provides an overview of the scales deduced in this section. It is215

worth noting that the pressure scales follow from ∂ pm,w/∂ z = O(bm,w), which hold both in the216

hydrostatic and non-hydrostatic regime, so that217

(Pm,Pw) = (HmBm,HwBw) = (ηH2
mN2
∗ ,η

2H2
mN2
∗ ) , (21)

as can be also verified from the GW polarization relations. Finally, the sub-mesoscale time scale218

is the inverse intrinsic-frequency scale219

Tw =
1

Ωw
=

f
N∗aw

1
f
= ηTm . (22)
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c. Nondimensional equations, multi-scale asymptotics and WKB ansatz220

In the next step, the scaling for the sub-mesoscale GWs derived above (see table 1) is used to221

nondimensionalize the governing equations (1) - (3). After substituting222

(u,w,b, p) → (Uwu,Www,Bwb,Pw p) (23)

(xh,z, t) → (Lwxh,Hwz,Twt) (24)(
f ,N2) → (

f f0,N2
∗N2

0
)
=

(
f f0,

N2
0

a2
wT 2

w

)
, (25)

where the subscript h denotes the horizontal components (here of the position vector x), the di-223

mensionless equation system reads224

Dv
Dt

+η f0ez×u = −∇h p− 1
η2q

(
∂ p
∂ z
−b
)

ez (26)

Db
Dt

+N2
0 w = 0 (27)

∇ ·v = 0 . (28)

Next, ‘compressed’ variables are introduced to describe the slow variations of the resolved225

mesoscale flow, as compared to those of the sub-mesoscale flow,226

(X,T ) = (Xh,Z,T ) =
(
η

2xh,ηz,ηt
)
, (29)

and then a WKB ansatz to describe a locally monochromatic sub-mesoscale wave with slowly227

varying amplitude, wave number and frequency is used. For a generic variable ξ it reads228

ξ (x, t) = ℜ Ξ(X,T )e
i φ(X,T )

η2 , (30)
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where Ξ(X,T ) indicates the (slowly varying) amplitude and φ(X,T )η−2 the (rapidly vary-229

ing) phase. Following Tabaei and Akylas (2007), the latter is defined as φ(X,T ) = φ0(Xh) +230

ηφ1(Xh,Z,T ), so that the local horizontal wave number, vertical wave number and frequency are231

∇h

(
φ

η2

)
= ∇Xhφ0 +η ∇Xhφ1 ≡ k(0)

h (Xh)+η k(1)
h (Xh,Z,T ) (31)

∂

∂ z

(
φ

η2

)
=

∂φ1

∂Z
≡ m(Xh,Z,T ) (32)

∂

∂ t

(
φ

η2

)
=

∂φ1

∂T
≡−ω(Xh,Z,T ) , (33)

where ∇X denotes compressed spatial derivatives. Finally, all fields are expanded in the small-232

scale separation parameter η , taking into account the scaling derived above, and using subscripts233

0 and 1 for the mesoscale and sub-mesoscale parts, respectively:234



u

w

b

p


=

∞

∑
j=0

η
j



u( j)
0 (X,T )

ηw( j)
0 (X,T )

b( j)
0 (X,T )

η−1 p( j)
0 (X,T )


+ℜ

∞

∑
j=0

η
j



u( j)
1 (X,T )

w( j)
1 (X,T )

b( j)
1 (X,T )

p( j)
1 (X,T )


e

i φ(X,T )
η2 . (34)

Note that in this ansatz both mesoscale-field and sub-mesoscale-wave amplitude as well as spatial235

and temporal scaling are all given in terms of the scale separation parameter η . There is no separate236

amplitude parameter. Higher harmonics of the sub-mesoscale waves are neglected, as they can be237

shown to not contribute at leading order due to the dispersive GW dispersion relation (Achatz et al.238

2017).239
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d. Order analysis240

After inserting the multi-scale asymptotic ansatz (34) into the nondimensional equations (26) -241

(28) all terms are sorted by equal powers of η and the phase factor eiη−2φ(X,T ). Terms without242

phase factor describe mesoscale dynamics, while those proportional to the phase factor yield in-243

formation on sub-mesoscale wave dynamics; other harmonics, like e2iη−2φ(X,T ) and higher, are not244

considered, as noted above. The following will be kept concise as the procedure is standard (e.g.245

Achatz et al. 2010, 2017).246

1) LEADING ORDER RESULTS247

The leading order of the vertical momentum equation establishes that the mesoscale flow is248

hydrostatic,249

∂ p(0)0
∂Z
−b(0)0 = 0 , (35)

while the leading-order sub-mesoscale terms in the equations can be summarized as250

MMMq

(
k(0)

h ,m, ω̂
)

s(0)1 = 0, where MMMq is the anti-hermitian coefficient matrix251

MMMq

(
k(0)

h ,m, ω̂
)
=



−iω̂ 0 0 0 ik(0)

0 −iω̂ 0 0 il(0)

0 0 −iω̂δq0 −N0 im

0 0 N0 −iω̂ 0

ik(0) il(0) im 0 0


(36)
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with the well-known Kronecker delta δq0, the intrinsic frequency ω̂ = ω − k(0)
h · u(0)

0 , i.e. the252

frequency relative to the mesoscale velocity, and253

s(0)1 =

(
u(0)1 ,v(0)1 ,w(0)

1 ,
b(0)1
N0

, p(0)1

)T

, (37)

the vector of leading-order sub-mesoscale wave amplitudes. Non-trivial sub-mesoscale wave am-254

plitudes s(0)1 6= 0 require a vanishing determinant of MMMq, leading to either the balanced solution255

ω̂ = 0 or the GW dispersion relation256

ω̂ =±N0

√√√√√√
∣∣∣k(0)

h

∣∣∣2∣∣∣k(0)
h

∣∣∣2 δq0 +m2
. (38)

The corresponding null vector yields the sub-mesoscale wave-amplitude polarization relations257

{
w(0)

1 , p(0)1 ,u(0)
1

}
= iω̂

 1
m
,− ω̂∣∣∣k(0)

h

∣∣∣2 ,−
k(0)

h∣∣∣k(0)
h

∣∣∣2
a(0) , (39)

where a(0) = mN−2
0 b(0)1 defines the buoyancy amplitude relative to the margin of static instability.258

While the leading-order horizontal wave number does not develop in time, vertical wave number259

and frequency do. From their definition and the dispersion relation260

ω(X,T ) = k(0)
h ·u(0)

0 (X,T )±N0(Z)

√√√√√√
∣∣∣k(0)

h

∣∣∣2∣∣∣k(0)
h

∣∣∣2 δq0 +m2
≡Ω(X,T,k) , (40)
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one obtains their prognostic eikonal equations261

(
∂

∂T
+ cgz

∂

∂Z

)
ω =

∂Ω

∂T
= k(0)

h ·
∂u(0)

0
∂T

(41)

(
∂

∂T
+ cgz

∂

∂Z

)
m = −∂Ω

∂Z
=−k(0)

h ·
∂u(0)

0
∂Z
∓ dN0

dZ

√√√√√√
∣∣∣k(0)

h

∣∣∣2∣∣∣k(0)
h

∣∣∣2 δq0 +m2
, (42)

where cgz = ∂Ω/∂m is the (intrinsic) vertical group velocity. No horizontal group velocities262

appear since, at the sub-mesoscales considered, to leading order, energy is transported only verti-263

cally.264

2) HIGHER-ORDER RESULTS265

The next-to-leading (‘second’) orders in η yield the following mesoscale-flow equations:266

∂b(0)0
∂T

+N2
0 w(0)

0 = 0 (43)

∂u(0)
0

∂T
+ f0ez×u(0)

0 +∇Xh p(0)0 = −1
2

∂

∂Z
ℜ

{
w(0)

1 u(0)∗
1

}
, (44)

while the ‘third’ order of the mesoscale part of the continuity equation reads267

∇X ·v(0)0 = 0 , (45)

with v(0)0 = u(0)
0 +w(0)

0 ez. As expected, a sub-mesoscale-wave impact only exists in the horizontal268

momentum equation.269
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With the definition270

rq =−



(
∂

∂T
+ iυ

)
u(0)1 +w(0)

1
∂u(0)0
∂Z
− f0v(0)1 + ik(1)p(0)1(

∂

∂T
+ iυ

)
v(0)1 +w(0)

1
∂v(0)0
∂Z

+ f0u(0)1 + il(1)p(0)1(
∂

∂T
+ iυ

)
w(0)

1 δq0 +
∂ p(0)1
∂Z

1
N0

(
∂

∂T
+ iυ

)
b(0)1 +

1
N0

w(0)
1

∂b(0)0
∂Z

ik(1)
h ·u(0)

1 +
∂w(0)

1
∂Z


, (46)

using the shortcut υ = k(0)
h ·u(1)

0 +k(1)
h ·u(0)

0 +mw(0)
0 , the sub-mesoscale wave terms of the equa-271

tions give for the next-to-leading orders in η the equation set MMMq

(
k(0)

h ,m, ω̂
)

s(1)1 = rq, where272

s(1)1 =

(
u(1)1 ,v(1)1 ,w(1)

1 ,
b(1)1
N0

, p(1)1

)T

(47)

contains the next-order wave amplitudes. MMMq has a non-vanishing nullspace and thus rq may not273

project onto it. This amounts to s(0)†1 rq = 0, with † for the complex conjugate transpose, yielding274

∂ew

∂T
+

1
2

∂

∂Z
ℜ

{
w(0)

1 p(0)∗1

}
=−1

2
ℜ

{
w(0)

1 u(0)∗
1

}
·

∂u(0)
0

∂Z
, (48)

where * denotes the complex conjugate, for the energy density275

ew = e(0)1 =
1
4

(∣∣∣u(0)
1

∣∣∣2 + ∣∣∣w(0)
1

∣∣∣2 δq0 +
1

N2
0

∣∣∣b(0)1

∣∣∣2)=
1

2N2
0

∣∣∣b(0)1

∣∣∣2 . (49)
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Using the dispersion relation (38) and polarization relations (39), the energy flux and the shear-276

production term are expressed as277

1
2

ℜ

{
w(0)

1 p(0)∗1

}
= cgzew (50)

1
2

ℜ

{
w(0)

1 u(0)∗
1

}
·

∂u(0)
0

∂Z
= cgz

ew

ω̂
k(0)

h ·
∂u(0)

0
∂Z

. (51)

Thus, the wave-action conservation equation is obtained from (48), yielding278

∂Aw

∂T
+

∂

∂Z

(
cgzAw

)
= 0 , (52)

where Aw = ewω̂−1 is the wave-action density.279

e. Redimensionalization280

The essential meso- and sub-mesoscale equations derived in section 2d are finally transformed281

back into the original coordinates and redimensionalized by applying the substitutions282

(
u(0)

0 ,w(0)
0 ,b(0)0 , p(0)0

)
→

(
U

Um
,

W
Wm

,
B

Bm
,

P
Pm

)
(53)(

u(0)
1 ,w(0)

1 ,b(0)1 , p(0)1

)
→

(
ũ

Uw
,

w̃
Ww

,
b̃

Bw
,

p̃
Pw

)
(54)

(Xh,Z,T ) →
(

η2

Lw
xh,

η

Hw
z,

η

Tw
t
)

(55)

(
f0,N2

0
)
→

(
f
f
,a2

wT 2
w N2

)
(56)(

k(0)
h ,m, ω̂

)
→ {Lwkh,Hwm,Twω̂) . (57)
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The dispersion and polarization relations (38) and (39) of the sub-mesoscale GWs now read283

ω̂ = ±N

√
|kh|2

|kh|2δq0 +m2 (58)

{w̃, p̃, ũ} = iω̂
{

1
m
,− ω̂

|kh|2
,− kh

|kh|2

}
ã , (59)

with ã = mN−2b̃, and their energy density is given by284

εw =
1
4

(
|ũ|2 + |w̃|2δq0 +

1
N2 |b̃|

2
)
=

1
2N2 |b̃|

2 , (60)

with the corresponding wave-action density A = εwω̂−1.285

The so-called ray equations, consisting of the eikonal equations (41) and (42) as well as the286

wave-action density equation (52), describe completely the sub-mesoscale dynamics, while the287

mesoscale dynamics is governed by the buoyancy, continuity and momentum equations (35) and288

(43) - (45). After back-transformation to the original coordinates and redimensionalization a289

coupled equation system for the interaction between meso- and sub-mesoscale GWs is obtained.290

Specifically, the mesoscale prognostic equations are291

∇ ·V = 0 (61)

∂B
∂ t

+N2W = 0 (62)

∂P
∂ z
−B = 0 (63)

∂U
∂ t

+ f ez×U+∇hP = −kh
∂

∂ z

(
cgzA

)
, (64)

where V=U+Wez. These equations are linear in the mesoscale variables since the corresponding292

wave amplitude is sufficiently low. All mesoscale-flow non-linearities disappear in the asymptotic293
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limit of small η . The sub-mesoscale-wave forcing acts via the convergence of the vertical flux of294

pseudomomentum khA , as one finds from (44) and (51). The sub-mesoscale dynamics is given295

by296

(
∂

∂ t
+ cgz

∂

∂ z

)
ω = kh ·

∂U
∂ t

(65)(
∂

∂ t
+ cgz

∂

∂ z

)
m = −

{
kh ·

∂U
∂ z
± dN

dz

√
|kh|2

|kh|2δq0 +m2

}
(66)(

∂

∂ t
+ cgz

∂

∂ z

)
A = −A

∂cgz

∂ z
. (67)

Vertical propagation of the waves is too fast for lateral propagation effects to matter within the297

time elapsing during the vertical propagation over a mesoscale vertical length scale. Note that298

(65) follows from (66) and the dispersion relation (58), and hence is not an independent equation299

in the sub-mesoscale model. The vertical group velocity cgz may be calculated with the help of the300

current vertical wave number m.301

Finally it is to be mentioned that the coupled equation system (61) - (67) is energy-conserving.302

For the mesoscale energy density εm = 1/2
(
|U|2 +B2/N2) one finds from (61) - (64) that its303

tendency obeys304

∂εm

∂ t
= U · ∂U

∂ t
+

1
N2 B

∂B
∂ t

= −U ·
{

f ez×U+∇hP+kh
∂

∂ z

(
cgzA

)}
− 1

N2 BN2W

= −∇ · (VP)−U ·kh
∂

∂ z

(
cgzA

)
, (68)
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while it can be seen from the dimensional version of (48), (50) and (51) that the evolution of305

sub-mesoscale energy density εw = A ω̂ is governed by306

∂εw

∂ t
=− ∂

∂ z

(
ω̂cgzA

)
− cgzA

∂

∂ z

(
U ·kh

)
. (69)

Therefore, the local total energy density εt = εm + εw satisfies307

∂εt

∂ t
=−∇ · (VP)− ∂

∂ z

(
ωcgzA

)
. (70)

As a result, if there is no mesoscale pressure flux at all boundaries, and no sub-mesoscale energy308

flux ωcgzA at the vertical boundary of the domain, or if periodic boundary conditions hold, the309

spatially integrated total energy density Et is conserved:310

dEt

dt
=

d
dt

∫
εt d3x = 0 . (71)

3. Description of the numerical models311

In this section the numerical code used for validation tests is described: The WKB code312

PincFloit-WKB is an implementation of the theory presented above. PincFloit without WKB313

sub-mesoscale-wave model, but instead in a setting explicitly resolving the sub-mesoscale waves314

is used for large-eddy simulations (LES), to provide data against which to validate the WKB model315

as well as its underlying theory. Since the GW dynamics is invariant with regard to rotation of the316

horizontal coordinate system, both codes have been used in 2D mode.317
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a. The PincFloit-WKB model318

1) SUB-MESOSCALE FLOW: THE LAGRANGIAN WKB MODEL319

The numerical implementation of the interaction between sub-mesoscale and mesoscale flow320

is achieved by coupling a Lagrangian phase-space ray tracer (Muraschko et al. 2015) to the321

mesoscale resolving model PincFloit. As can be read directly from the sub-mesoscale GW equa-322

tions (66) - (67), along rays satisfying323

dz
dt

= cgz =∓
N|kh|m

(|kh|2 +m2)
3
2

(72)

vertical wave number and wave-action density develop according to324

dm
dt

= ṁ = −

{
kh ·

∂U
∂ z
± dN

dz

√
|kh|2

|kh|2 +m2

}
(73)

dA

dt
= −A

∂cgz

∂ z
, (74)

while the frequency can be obtained from the wave number and local mesoscale flow by the di-325

mensional version of the full dispersion relation (40). In (73) the replacement δq0→ 1 has been326

done, since in the case q = 1 one has k2�m2 anyway. Direct implementation of this model leads,327

however, to serious numerical instabilities (Tabaei and Akylas 2007; Rieper et al. 2013a). These328

are due to caustic situations where rays cross, leading to multivalued wave numbers and wave-329

action densities. This can be avoided by taking a spectral perspective (Muraschko et al. 2015),330

where (72) and (73) indicate movement through a phase space spanned by vertical position and331

wave number. Wave-action density A (x, t) is then replaced by the spectral phase-space wave-332

action density N (x,m, t) (e.g. Dewar 1970; Olbers 1976; Bühler and McIntyre 1999; Hertzog333
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et al. 2002; Muraschko et al. 2015), developing along the rays according to334

drN

dt
= 0 , (75)

with dr/dt = ∂/∂ t + cgz∂/∂ z+ ṁ∂/∂m the phase-space material derivative. A can be retrieved335

from it by the wave number integral A (x, t) =
∫

dmN (x,m, t) and the sub-mesoscale momentum336

flux, e.g., is obtained from337

cgzkhA →
∫

dmcgzkhN . (76)

This requires reconstructing the full phase-space dependence of N from infinitely many rays. In338

a first discretization step one therefore collects rays carrying non-zero wave-action in a number of339

rectangular ray volumes with constant N . In principle the individual ray velocities will deform340

these ray volumes arbitrarily strongly. In a second discretization step this deformation is simplified341

by prescribing the ray volumes to keep a rectangular shape. More details on this and the corre-342

sponding momentum-flux reconstruction are given by Muraschko et al. (2015) and Bölöni et al.343

(2016).344

The sub-mesoscale momentum flux as well as energy density are smoothed after regridding over345

a window of 3×3 PincFloit finite-volume cell equivalents, see sections 3a.2) and 3a.3) below, in346

order to avoid artificial peaks resulting from sampling problems due to the ray discretization.347

Moreover, in the simulations the effect of sub-mesoscale horizontal group velocity is indeed small348

compared with that of the vertical group velocity, as found in theory, but still noticeable in the com-349

parisons with the LES. Therefore, this effect has been incorporated by allowing the ray volumes350
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to also propagate in the horizontal direction for several simulations,351

drxh

dt
= Uh±

Nm2

(|kh|2 +m2)
3
2

kh

|kh|
= cgh , (77)

implying as well a generalized phase-space material derivative dr/dt = ∂/∂ t + cg ·∇+ ṁ∂/∂m,352

with cg the 3D group velocity. Finally, the ray tracer has been supplemented by a simple saturation353

scheme (Bölöni et al. 2016) to account for turbulent wave breaking. The wave-action density354

of the sub-mesoscale GW packet is locally reduced, when its amplitudes reach the upper limit355

of static stability. Results show that the saturation is important for the total energy budget. In356

the present Boussinesq context, however, it has not contributed significantly to the instantaneous357

wave field distribution and simulation results discussed below.358

359

2) MESOSCALE FLOW: PINCFLOIT360

The pseudo-incompressible flow solver with implicit turbulence modeling (PincFloit), originally361

developed by Rieper et al. (2013b) to solve the pseudo-incompressible equations of Durran (1989),362

modified appropriately to integrate the Boussinesq equations (1) - (3), has been used at mesoscale363

resolution to simulate the resolved mesoscale flow. To account for the impact of the unresolved364

sub-mesoscale waves, the momentum equation has been supplemented by the corresponding con-365

vergence of horizontal pseudomomentum flux, as indicated by (64) and (76):366

DV
Dt

+ f ez×U =−∇P+Bez−
∂

∂ z

∫
dmcgzkhN . (78)

The latter is provided by the Lagrangian WKB code described above. As adumbrated by (78),367

in PincFloit the leading-order mesoscale dynamics is identified with the full resolved mesoscale368
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non-linear flow. Technically, PincFloit uses a finite-volume discretization with a staggered369

grid. Time integration is performed by an adaptive third-order Runge-Kutta scheme with a370

CFL criterion. Pressure is computed, using the non-divergence constraint (61), by solving the371

corresponding Poisson equation. The latter is done using a BiCGSTAB method (van der Vorst372

1992). More details can be found in Rieper et al. (2013b).373

374

3) THE COUPLED PINCFLOIT-WKB MODEL375

PincFloit and the Lagrangian WKB model are coupled interactively, so as to simulate the tran-376

sient interaction processes of resolved mesoscale, and unresolved sub-mesoscale GWs, as derived377

in section 2. At every Runge-Kutta sub-step, information is exchanged between the meso- and the378

sub-mesoscale dynamics. The Lagrangian WKB model determines the momentum flux conver-379

gence of the sub-mesoscale waves via the discretization of (76) and updates the mesoscale wind380

field which is then delivered to PincFloit. Hereafter, the latter integrates the Boussinesq equations381

(1) - (3) at mesoscale resolution. After that, the new wind and background values are provided to382

the Lagrangian WKB model, which solves the ray tracing equations (72), (73) and (75) (as well as383

(77), if intended), yielding an updated sub-mesoscale wave momentum flux and thus closing the384

circle.385

Another remark is that this coupled system conserves the sum of mean-flow and wave energy386

too. From the Boussinesq equations (1) - (3) it can be derived for the mesoscale-flow energy387

density εm = 1/2
(
|V|2 +B2/N2) that388

∂εm

∂ t
=−∇ · (V [εm +P])− ∂

∂ z

(
U ·
∫

cgzkhN dm
)
+

∂U
∂ z

·
∫

cgzkhN dm , (79)
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while Bölöni et al. (2016) have shown for the sub-mesoscale wave energy density εw =
∫

dmω̂N389

that390

∂εw

∂ t
=− ∂

∂ z

∫
ω̂cgzN dm− ∂U

∂ z
·
∫

cgzkhN dm , (80)

so that total energy
∫

εtd3x=
∫
(εm+εw)d3x is conserved under suitable boundary conditions (zero391

or periodic) for the respective fluxes.392

b. PincFloit-LES393

In LES mode PincFloit is used to integrate the fully non-linear Boussinesq equations (1) - (3),394

with the above WKB sub-mesoscale-wave model switched off. Its resolution is chosen fine enough395

that the initial sub-mesoscale wave field is completely resolved, and that it captures wave-wave396

interactions, and interactions between all waves and the larger-scale turbulent eddies. Motivated397

by the results from corresponding benchmark tests (Remmler et al. 2015), small-scale turbulence398

is not parameterized by the implicit adaptive local deconvolution method (ALDM; see e.g. Hickel399

et al. (2006)), as originally implemented into PincFloit, but by a dynamic Smagorinsky method400

(Germano et al. 1991). The corresponding Smagorinsky coefficient is averaged over a local spatial401

window of 5×5 finite-volume cells so as to stabilize the scheme.402

4. Numerical experiments403

PincFloit-WKB and PincFloit-LES were used to simulate the propagation of a spatially confined404

wave packet in a uniformly stratified (N = 0.02 s−1) atmosphere on an f -plane ( f = 10−4 s−1, ex-405

cept in the test case COR, where f = 0) with zero initial ambient flow. It is well known from long-406

short-wave interaction theory (Tabaei and Akylas 2007; Van den Bremer and Sutherland 2014)407

that such a packet of small-scale waves is able to generate a mean flow consisting of mesoscale408

wave structures connected to a resonance phenomenon (see also section 4c). In turn, the mesoscale409
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waves may have an influence on the propagation of the wave packet. All simulations, investigating410

the resonant behaviour of various sub-mesoscale wave packets, are two-dimensional. The horizon-411

tal x-axis is chosen to point into the direction of kh = kex and all initial fields are only dependent412

on x and z, as is then also the case henceforth. All models use periodic boundary conditions in x413

and z.414

a. Initialization415

Consequently, a locally monochromatic wave packet with horizontal and vertical wave num-416

bers k and m0, respectively, is initialized. It is vertically as well as horizontally confined, with a417

Gaussian-envelope amplitude B̂ characterized by the standard deviations σx and σz. Its buoyancy418

field is thus419

b(x,z, t0) = B̂(x,z) cos(kx+m0z) , (81)

B̂(x,z) =
N2

m0
ã exp

[
−(x− x0)

2

2σ2
x

]
exp
[
−(z− z0)

2

2σ2
z

]
. (82)

Herein the amplitude parameter ã is chosen so that at infinite σz static stability is given at x = x0,420

i.e. N2 +∂b/∂ z > 0, for values ã < 1. The initialization fields for the LES model are determined421

from the full rotational GW polarization relations (see e.g. Bühler (2009), §8.2)422

{ũ, w̃}=
{

i
khω̂− i f ez×kh

mN2
ω̂2−N2

ω̂2− f 2 , i
ω̂

N2

}
b̃ , (83)

which lead, by the way, to the same initialization for a 2D wave packet with l = 0 as if one would423

use the leading-order polarization relations (59), except for the meridional wind component v,424

30



yielding425

{u,w}(x,z, t0) =

{
ω̂0

k
,− ω̂0

m0

}
B̂(x,z) sin(kx+m0z) (84)

{v,b}(x,z, t0) =

{
− f

k
,1
}

B̂(x,z) cos(kx+m0z) , (85)

where ω̂0 denotes the intrinsic frequency of the initially monochromatic wave packet with wave426

numbers k and m0, including rotational effects. In line with the hydrostatic sub-mesoscale-wave427

scaling regime (20) defined above, the choice falls on λx = 2π/k = 1000 m and λz = −2π/m0 =428

100 m, based on typical mesoscales like 2 σx = Lm = 100 km and 2 σz = Hm = 1 km (except for429

the case SCALE in section 4d). A typical mesoscale timescale for the wave packet test case is430

given by Tm = f−1 = 10000 s.431

In PincFloit-WKB the initial fields of the wave packet are to be defined for the Lagrangian432

WKB model. Following Muraschko et al. (2015), a certain set of ray volumes, each carrying433

specific wave properties, is ‘placed’ in a rectangular 2.5 σ -environment around the initial center434

of the wave packet in both x- and z-direction, covering more than 98.7 % of wave energy density,435

as shown in figure 1. The initial phase-space wave-action density of the quasi-monochromatic436

wave packet is assumed to be437

N (x,z,m, t0) =


B̂2(x,z)
2N2ω̂0

1
∆m0

, m0,1 ≤ m≤ m0,2

0 , else
, (86)

where m0,1 = m0−∆m0/2 and m0,2 = m0+∆m0/2. It is then discretized by rectangles in physical438

space, and in wave-number space by two wave-number intervals each centered at wave numbers439

m = m0,1 +∆m0/4 and m = m0,2−∆m0/4, constituting together phase-space ray volumes within440
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which N is taken to be constant. After initialization the ray volumes propagate through the441

phase space in accordance with the ray equations (72), (73) and (77), changing in response to the442

mesoscale flow physical location and wave number. Hence an initially quasi-monochromatic wave443

packet can develop quite complex spectra, as also discernible from figure 6 below.444

Resolution is chosen as follows: In PincFloit-LES around 33 grid points in x- and 20 grid points445

in z-direction per initial sub-mesoscale wavelength are set. For PincFloit-WKB it turned out that446

10 grid points per typical mesoscale length scale are sufficient in most of the test cases (see table447

3). Parameters describing the general setup are listed in table 2.448

b. Postprocessing449

While PincFloit-WKB outputs directly the sub-mesoscale GW momentum flux, their energy450

density, and mesoscale wind and buoyancy fields, the output fields of PincFloit-LES contain both451

meso- and sub-mesoscale information, which have to be separated. Instead of a wave number452

filter as applied by Van den Bremer and Sutherland (2014), a running mean over two initial453

sub-mesoscale wavelengths in each spatial direction filters sub-mesoscale contributions from the454

mesoscale ones. The former are then obtained by subtracting the mesoscale part from the full field455

and subsequently, momentum flux and wave energy density are calculated via456

ũw̃(x j,zi, tk) = ũ(x j,zi, tk)w̃(x j,zi, tk) (87)

εw(x j,zi, tk) =
1
2

(
|ũ|2 (x j,zi, tk)+ w̃2(x j,zi, tk)+

1
N2 b̃2(x j,zi, tk)

)
(88)

at each grid point (x j,zi) for each output time tk, where the overbar indicates an additional running457

mean over two wavelengths. There is no significant sensitivity to the choice of the average interval458
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when comparing the results for an average over one up to three (and more) initial sub-mesoscale459

wavelengths.460

c. Resonant interaction of mesoscale with sub-mesoscale GWs461

It is known that energy exchange between long and short GWs is particularly strong, when a462

packet of small-scale GWs interacts with its induced large-scale mean flow under resonance con-463

ditions. Grimshaw (1977) found such resonant behaviour for a modulated wave train propagating464

along a horizontal channel, whereas Sutherland (2001), Tabaei and Akylas (2007) and Van den465

Bremer and Sutherland (2014) investigated wave-mean flow interactions for spatially localized466

wave packets propagating vertically through an unbounded stratified Boussinesq fluid. Tabaei and467

Akylas (2007), in particular, pointed out that flat wave packets, characterized by a stronger mod-468

ulation in the vertical than in the horizontal, can lead to resonant forcing of large-scale waves.469

This resonance arises when the wave packet modulation scales are compatible with those of free,470

hydrostatic inertia GWs, that are natural mode solutions of the Boussinesq system. Furthermore,471

in the small-amplitude limit, where to leading order the wave packet envelope propagates verti-472

cally as a wave of permanent form, this resonance singles out inertia GWs whose vertical phase473

velocity matches the vertical group velocity of the wave packet. Tabaei and Akylas (2007) further474

speculated that this mechanism might be responsible for the generation of inertia GWs in the real475

atmosphere.476

As noted in section 2b, the scaling regime considered by Tabaei and Akylas (2007) corre-477

sponds to the non-hydrostatic limit (19) which, under atmospheric conditions, exhibits a rather478

strong scale separation Lw/Lm = O(10−4) and Hw/Hm = O(10−2); as a result, the associated sub-479

mesoscale waves would be quite short: Hw = Lw = O(10 m). The hydrostatic regime, identified480

in (20), however, features sub-mesoscale GWs with length scales about one order of magnitude481
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smaller than typical grid point distances of nowadays global NWP models and of the same mag-482

nitude as the distances in regional limited area models (see section 4a). Consequently, in the latter483

such sub-mesoscale waves reside on the largest unresolved scale, and the long-short GW resonance484

of Tabaei and Akylas (2007) is relevant to this regime.485

The resonance condition noted above for small-amplitude wave packets can be written in the486

present notation as487

ĉgz=ĉpzm , (89)

where ĉgz is the (intrinsic) vertical group velocity of the sub-mesoscale wave packet and ĉpzm the488

vertical phase velocity of the induced, mesoscale inertia GWs. Van den Bremer and Sutherland489

(2014) used this condition to estimate the phase line tilt of the generated large-scale waves in490

a non-rotational atmosphere. Here, based on (89), the geometry of the induced mesoscale inertia491

GW disturbance in the presence of rotation is discussed, following a kinematic approach analogous492

to that of the classical Kelvin ship wave pattern (see Whitham (1974), §12.4).493

The resonance condition (89) combined with the dispersion relation (5) implies that the hori-494

zontal wave number km can be expressed in terms of the vertical wave number mm of the induced495

mesoscale GWs (which are hydrostatic according to (4)):496

km =±mm

N

√
ĉ2

gzm2
m− f 2 . (90)

As noted earlier, this assumes that: (i) The sub-mesoscale wave packet envelope, which acts497

as forcing, propagates as a wave of permanent form at constant speed ĉgz; and (ii) the induced498

mesoscale waves are steady in the frame of the moving source. The validity of these assumptions499

will be tested numerically in section 4d.500
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In addition, one has generally ∂mm/∂x = ∂km/∂ z, which combined with (90) yields501

∂mm

∂x
− ∂km

∂mm

∂mm

∂ z
= 0 . (91)

This equation for mm can be treated by the methods of characteristics. In the far field, all charac-502

teristics (straight lines) originate from the source (which appears as a point, x = z = 0, say, in the503

moving frame, with z > 0 behind the source), and it is found that504

z
x
=∓ 1

N
2ĉ2

gzm
2
m− f 2√

ĉ2
gzm2

m− f 2
. (92)

Equation (92) determines mm for given z/x, and the corresponding km follows from (90). It should505

be noted that |z/x| →∞ as |mm| → f/ĉgz; also, when |mm| →∞, one has |z/x| ≈ 2|mm|ĉgz/N→∞.506

This suggests that there must be limiting characteristics [z/x]lim, where507

∂ (z/x)
∂mm

= 0 . (93)

From this one obtains the critical wave number |mm,lim|= (3/2 f 2/ĉ2
gz)

1/2, which along with (92)508

gives [z/x]lim = ∓2
√

2 f/N. Thus, a Λ-like wave pattern behind the moving wave packet is509

expected as in the case of a ship wake. The opening angle α defined by the limiting characteristics510

is given by511

α = 2 tan−1
(

1
2
√

2
N
f

)
. (94)

As can be seen from (19), (20), (24) and (29), in compressed coordinates the opening angle is512

2 tan−1(1/[2
√

2])≈ 38.9◦, independently of the scaling regime. Remarkably, this angle is identi-513

cal to that of the classical Kelvin ship wave pattern on deep water (Whitham 1974).514
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Solving the characteristic equation (92) for m2
m gives515

m2
m =

1
ĉ2

gz

1
2

[
f 2 +

(
N
2

)2( z
x

)2
]
± N

2

∣∣∣ z
x

∣∣∣
√√√√1

2

[
1
2

(
N
2

)2( z
x

)2

− f 2

] . (95)

Generally, according to (95) combined with (90), there are four different possible modes: two516

short-wave (corresponding to the ‘+’ sign in (95)) and two long-wave (‘−’ sign) modes. The517

former are not relevant here, as their length scale is not in agreement with the mesoscale derived518

in our theory. Moreover, one of the two long-wave modes (where the phase contributions kmx and519

mmz have opposite signs), does not obey the radiation condition, so that wave energy would not520

be radiated away from the source. Thus, only one mode (where kmx and mmz have the same sign)521

is expected to prevail in the simulations (see figure 2), consistent also with figure 1 in Tabaei and522

Akylas (2007).523

d. Test case studies524

Theory and its numerical realization by the PincFloit-WKB model are validated in several test525

case studies: A reference simulation REF has been performed first, investigating the propagation526

of a relatively high-amplitude wave packet (ã = 0.5) in a uniformly stratified atmosphere initially527

at rest. After that, the initial amplitude is varied to both lower and higher amplitudes (test cases528

AMPx) in order to demonstrate the robustness of the Lagrangian WKB model for a wide range of529

amplitudes of sub-mesoscale waves. Then a wave packet pushing the limits of the asymptotic scal-530

ing (see table 1) as well as the WKB (see section 2c) assumptions is initialized, thus establishing531

the wide applicability of the PincFloit-WKB model and the range of validity of the theory (test case532

SCALE). The test case COR examines the sensitivity on the ratio f/N by setting f = 0; strictly533

speaking, this regime is not represented by the theory as η = 0. Physically, it is to be understood534
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as a limit case for a tropical background. Last, the test case PSINC is used to compare LES simu-535

lations of the REF wave packet in a pseudo-incompressible atmosphere to the chosen Boussinesq536

dynamics. PSINC will be referred to in the discussion in section 5. Table 3 provides an overview537

of the essential test case-specific model setup and namelist parameters. According to (20), the538

chosen background parameters N = 0.02 s−1 and f = 10−4 s−1 imply α = η ≈ 0.07 = O(0.1).539

Wave packets have been initialized in accordance with (82) and (84) - (86). Except for the540

SCALE test case, the spatial extent of the initialization box (roughly associated with the wave541

packet size) in PincFloit-WKB is 250 km×2.5 km. The quantities shown in the following figures542

are in dimensional units. The spatial coordinates are given in kilometers, whereas the time axis is543

scaled by the inverse of the inertial frequency f . The 2D LES fields are visualized after mapping544

them to a 512× 512 grid, with corresponding domain dimensions 500 km × 10 km - except for545

the case SCALE with 1000 km × 5 km.546

Figure 3 shows the initial condition in the REF test case; the distribution of wave energy density547

(calculated via (88)) is displayed, where one can easily see that most of the sub-mesoscale energy548

of the wave packet is contained in a range of roughly 1.5 X ×1.5 Z =̂ 150 km×1.5 km, with the549

compressed coordinates X and Z from (29). Since the wave packet amplitude is ã = 0.5 (and one550

may lose or gain factors as e.g. 2π in the scaling procedure), the wave packet energy density is551

somewhat smaller than theoretically assumed.552

For the test case REF, three slightly different PincFloit-WKB model configurations are set up.553

First, a single-column ray tracer with 1D spatial ray propagation, i.e. only in the vertical, is554

initialized and no feedback of the resolved flow onto the sub-mesoscale wave packet is allowed555

(i.e. the right hand side of both (73) and (77) equals zero; shortcut: PincFloit-WKB-1DNF).556

Secondly, a single-column ray tracer is used which accounts for two-way scale interactions (i.e.557

only the right hand side of (77) equals zero; shortcut: PincFloit-WKB-1D). Note that, although558

37



ray-volume propagation is 1D, the ray-volume amplitudes in N are not (see (86)), so that the559

sub-mesoscale wave packet induces a 2D mesoscale response. Thirdly, also horizontal ray volume560

propagation is allowed (shortcut: PincFloit-WKB-1.5D).561

After a bit less than one inertial period (t ≈ 17.3 h), one has a couple of findings. In the case of a562

non-energy-conserving system with no coupled interaction (figure 4(a)), one observes horizontally563

more prolonged mesoscale wave structures than in the validating LES simulation 4(d). The colored564

contours represent the wave packet-induced mesoscale horizontal winds. Furthermore, there is no565

wave packet deformation with PincFloit-WKB-1DNF, which is a result of the feedback process (to566

be compared with figure 4(b)). Horizontal propagation of the wave packet is rather weak compared567

to the vertical in terms of the characteristic mesoscales. Incorporating (77), with PincFloit-WKB-568

1.5D (figure 4(c)) a picture, which is qualitatively as well as quantitatively very close to the LES,569

is obtained.570

The overlay of the theoretically derived wave structures of figure 2 on figure 4(a) shows that571

indeed, the resonance condition examined in section 4c is able to explain the lateral confinement572

of the induced waves: the mesoscale wave patterns are reminiscent of modes which develop in the573

wake of a ship, and the spatial extent of them is in good agreement to the area bounded by the574

limiting characteristics - except close to the wave packet, as it is no point source as assumed in575

the theoretical derivation. Interestingly, self-acceleration effects cause a lateral constriction of the576

induced structures close to the wave packet, so that the feedback-allowing simulations resemble577

the prediction even more with regard to the limiting characteristic. The vertical wavelengths are578

predicted by (95) to be somewhat longer than observed in these simulations and the phase line579

tilt is expected to be less pronounced; these small differences are explainable by the application580

of the far field approximation, the disregarded feedback from the induced waves and hence the581

requirement of a constant group velocity of the wave packet in section 4c, as underscored by the582
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longer wavelengths in figure 4(a). Nevertheless, the equations derived there seem to be a very583

good indicator for the prediction of the induced wave mode.584

Furthermore, the induced structures are evocative of the ones induced by the small-amplitude585

non-hydrostatic wave packet of Tabaei and Akylas (2007): they resemble plain downward-586

propagating inertia GWs. Their period - extracted from the Hovmöller diagram in figure 5 - is587

very close to the inertial period 2π/ f .588

It shall be stressed again that - in contrast to the assumption of Van den Bremer and Sutherland589

(2014) - within the first inertial period, the wave packet energy density distribution varies already590

significantly, as the group velocity undergoes partially strong and rapid changes: the peak values591

of energy density are found in the lower sector of the wave packet (not shown). When mesoscale592

momentum and vertical momentum shear build up, the vertical wave number - and due to (72)593

vertical group velocity too - of a part of the sub-mesoscale waves undergoes considerable changes594

according to (73), as found by investigating the time evolution of the discrete wave number spec-595

trum (figure 6). The characteristics and phase lines of the wave mode predicted in section 4c might596

hence slightly differ from figure 2 or figure 4(a), respectively, when abandoning the requirement597

of a constant group velocity. Notably, in contrast to Tabaei and Akylas (2007) it can be reported598

that PincFloit-WKB is stable all the time although caustics are ubiquitous in physical space as599

can be seen in figure 6(b). Similar to Bölöni et al. (2016) it is also found (not shown) that the600

model conserves total energy very well (e.g. not more than 2% variation in REF at the end of the601

simulation time), as predicted in sections 2e and 3a.3).602

The AMPx test cases substantiate the finding that the refractive feedback onto the wave packet603

becomes larger, the larger its (initial) amplitude is, as one can clearly see on the figures 7 and604

8. In other words: as one moves towards small amplitudes, meso- and sub-mesoscales interact605

only weakly non-linearly and the wave packet propagation is very well approximated by its initial606
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group velocity. Consequently, the difference between the results of PincFloit-WKB-1DNF (figure607

7(a)) and PincFloit-WKB-1D (figure 7(b)) is considerably smaller than in the REF test case.608

Induced mesoscale momentum amplitudes, however, are about one order smaller in the small-609

amplitude case AMP1 compared to the REF simulations, well in proportion to the reduced mo-610

mentum forcing by the sub-mesoscale wave packet. While the frequency of the induced mesoscale611

waves remains close to the inertial period independently of wave packet amplitude, their vertical612

extent evolving during the wave packet propagation becomes the larger, the less refraction appears,613

as in the case of a small-amplitude quasi-steady propagating disturbance, where the mesoscale614

wind is too weak to influence the wave packet.615

In the case SCALE, a very flat wave packet of hydrostatic sub-mesoscale GWs is initialized,616

whose ratio of vertical to horizontal amplitude-variation length σz/σx is decreased by one order of617

magnitude, but whose total energy is kept constant compared to REF. Vertical amplitude variation618

is thus much stronger and horizontal amplitude variation weaker than originally assumed in theory.619

Beyond that, the vertical amplitude variation scale is now close to the vertical sub-mesoscale620

wavelength. Even though the horizontal scale separation is in accordance with the general regime,621

this is a case at the limit of the underlying theory.622

Figure 9 shows again the wave packet energy density and the induced mesoscale horizontal mo-623

mentum fields as in figure 4. Apart from the partly band-like representation of the wave packet due624

to a limited set of ray volumes - allowing a passable computing time - in PincFloit-WKB, which625

experiences strong wind shear changes, and a slight overestimation of the mesoscale amplitudes626

by PincFloit-WKB, the results from the parameterized model agree well with the LES model. An627

inertia GW is generated whose resonant amplification is broken off after approximately one iner-628

tial period simulation time due to wave packet energy spreading. The elongation of the induced629

mesoscale wave is hence smaller in the vertical than e.g. in AMP1 after that time, like in the630
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higher-amplitude cases REF or AMP2 after approximately two inertial periods, when the wave631

packet has experienced strong refraction effects.632

The test case COR, where f = 0 in contrast to the case REF, investigates the sensitivity of the633

implementation in PincFloit-WKB on the value of f/N (figure 10). Energy is radiated stronger and634

further laterally than in the rotational REF case, which is reflected by the induced wind structures.635

This finding has been carved out in detail by Van den Bremer and Sutherland (2014) and Tabaei636

and Akylas (2007), and underscores again the wide applicability of PincFloit-WKB.637

5. Résumé, discussion and outlook638

The first question in our study was whether there are any sub-mesoscale GWs that can modify639

mesoscale dynamics at typical scales. This has been investigated within Boussinesq dynamics for640

typical mid-latitude tropospheric values of f/N, using scale analysis and comparing the magni-641

tude of large-amplitude sub-mesoscale GW flux convergences with the self-consistent acceleration642

and heating in statically stable mesoscale GWs. A range of scales of high- and mid-frequency643

sub-mesoscale GWs has been identified where an impact on the mesoscale waves is possible. It644

encompasses the case of very small-scale high-frequency GWs investigated by Tabaei and Aky-645

las (2007), but even more interesting appear hydrostatic GWs with scales that are just below the646

resolution of present-day limited-area numerical-weather-prediction codes. For these waves the647

vertical scale separation is η =
√

f/N, while the horizontal scale separation is η2.648

Using multi-scale asymptotics a large-amplitude WKB theory for the interaction between lo-649

cally monochromatic sub-mesoscale GWs and a mesoscale flow has been derived. All nondi-650

mensional fields are expanded in terms of powers of η , and then the distinguished limit of small651

η is taken. This leads to separate but coupled equation systems, one describing explicitly re-652

solved mesoscale dynamics, and the other depicting sub-mesoscale dynamics, consisting of verti-653
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cal ray equations for the sub-mesoscale wave properties. Direct coupling is established on the one654

hand by a modification of the mesoscale-momentum equation through the vertical convergence655

of sub-mesoscale pseudomomentum flux, and on the other hand by a change of sub-mesoscale656

vertical wave number and frequency by mesoscale wind-shear regions, or, though unaffected657

by sub-mesoscale fluxes, the vertical variation of background stratification. An interesting and658

useful result might seem to be that, other than in the case of the interaction between synoptic-659

scale flow and mesoscale inertia GWs, neither is horizontal propagation of the small-scale GWs a660

leading-order effect, nor are small-scale-GW horizontal flux convergences. Hence single-column661

approaches to sub-mesoscale-GW modeling in mesoscale resolving models appear well justified662

at first sight. This seems to be in contrast to previous findings about the relevance of lateral prop-663

agation of mesoscale waves by Senf and Achatz (2011), Sato et al. (2012) and Plougonven et al.664

(2017), suggesting certain limitations of single-column approaches. Indeed, caution is at place665

to not misinterpret results. To see this, note that the ratio between vertical and horizontal group666

velocity is |cgz/|cgh|| = ||kh|/m| = Hw/Lw. Hence the horizontal distance L covered by a wave667

packet propagating in the vertical over a distance H is L = H Lw/Hw = H
√

N∗/ f , where the scal-668

ings (4) and (20) are used. The secondary importance of lateral propagation seen here is due to669

the fact that, if H = Hm is taken then L/Lm = H/Lm
√

N∗/ f =
√

f/N∗ � 1, again using (4).670

Hence the sub-mesoscale wave packet travels over considerably less a horizontal distance than the671

scale characterizing mesoscale variations. On the other hand, the ultimate justification for single-672

column implementations would be that for all possible vertical distances coverable, at most the673

vertical model extent H = Htop, the horizontal distance L covered should be less than a horizontal674

mesh distance ∆xh. This would imply L/∆xh = Htop/∆xh
√

N∗/ f � 1. Typically this condition675

cannot be met. It hence appears safer to take lateral propagation into account, and our simulations676

also show improved results if one does so.677
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The validity of the theory has been examined by its implementation into a mesoscale resolving678

Boussinesq model. The WKB fields of sub-mesoscale GW amplitudes and wave numbers are dis-679

cretized and predicted by a Lagrangian ray tracer (Muraschko et al. 2015; Bölöni et al. 2016) that680

uses a spectral phase-space representation, thereby avoiding numerical instabilities due to caustics681

(Tabaei and Akylas 2007; Rieper et al. 2013a) and also allowing the potential development of a682

spectral sub-mesoscale GW field from initially locally monochromatic conditions. The approach683

is validated against simulations by a sub-mesoscale-resolving large-eddy code.684

Test cases launching a 2D Gaussian wave packet of hydrostatic sub-mesoscale GWs furnish evi-685

dence of the applicability of the numerical approach and its underlying theory. A resonance effect686

occurs, which has been found in previous studies of Tabaei and Akylas (2007) and Van den Bremer687

and Sutherland (2014), and leads to the generation of mesoscale inertia GWs. Their characteris-688

tics correspond to free modes of the Boussinesq dynamics, which can be explained by a theoretical689

study of the resonance condition. The inertia GWs can have a strong impact onto sub-mesoscale690

wave packets by refraction, depending on wave amplitude, and eventually cause a saturation or691

breakup of the effective resonant energy transfer. Further case studies show that the approach,692

although designed for large-amplitude sub-mesoscale GWs, also works for low-amplitude sub-693

mesoscale GWs, and that it also performs reasonably well when the scale separation between694

mesoscale and sub-mesoscale is weaker than assumed in the theoretical derivations. Beyond that,695

the code seems to be usable for non-rotating cases as well.696

The Boussinesq setting of our analysis does not say that non-Boussinesq effects are irrelevant.697

The vertical decrease of ambient density would play an important role in operational weather-698

forecast and climate models. This is left out here for the mere sake of simplicity, but corresponding699

generalizations as in Bölöni et al. (2016) seem straightforward. Moreover, in an analysis on the700

basis of fully compressible dynamics Achatz et al. (2017) identify compressible and elastic effects701
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in the interaction between near-inertial mesoscale waves and synoptic-scale flow. One of these are702

synoptic-scale pressure fluctuations that matter in a strongly stratified atmosphere. The other is703

an elastic mesoscale-wave term appearing in the synoptic-scale momentum equations. That term704

is most relevant for near-inertial waves but loses importance in the non-inertial frequency range.705

The most interesting sub-mesoscale waves, which are identified in the present study, are in the706

latter range. Hence, a fully compressible treatment seems a necessary extension of the present707

investigations based on Boussinesq theory; however, it is not clear, whether it will identify, at the708

scales of interest here, relevant non-Boussinesq effects, beyond those resulting from the ambient-709

density vertical dependence. For a first hint the REF case has been simulated with PincFloit-LES,710

but using it in the pseudo-incompressible mode (Durran 1989; Rieper et al. 2013b) instead of the711

Boussinesq mode (test case PSINC). Pseudo-incompressible dynamics captures the elastic effects712

arising in the analysis of Achatz et al. (2017) in the momentum equation. Figure 11 shows a713

snapshot of the simulation, to be compared to figure 4. Apparently at least in this case elastic714

dynamics does not seem to be of leading-order importance.715

Our analysis shows that sub-mesoscale GWs can influence significantly a mesoscale flow, pro-716

vided their amplitudes are large enough, and it also derives a theory and its numerical imple-717

mentation for the efficient representation of such effects in mesoscale-resolving models. Whether718

sub-mesoscale GWs at the required scales and amplitudes are indeed present to a sufficient degree719

in the atmosphere, and by which processes they can be generated, certainly is another question720

that should be investigated in the future. Mesoscale wind-field spectra determined from aircraft721

data by Callies et al. (2014) and Bierdel et al. (2016), do not exhibit dissipation at the smallest722

observable scales so that one could imagine a continuation of these well into the sub-mesoscale723

range. A further indication is that GWs at very small scales seem to be a relevant issue in the stable724

planetary boundary layer (Sun et al. 2015). Should corresponding studies yield further support for725
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the relevance of sub-mesoscale GWs, an unavoidable next step would have to be extending the726

Boussinesq theory to an analysis of the compressible Euler equations.727
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APPENDIX736

Derivation of a general scaling regime737

As motivated at the beginning of section 2b, in order to identify a general scaling regime for the738

interaction between meso- and sub-mesoscale GWs, the sub-mesoscale flux convergence terms739

must be comparable to the leading mesoscale terms in the governing equations (1) - (3). Specifi-740
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cally, the relevant convergence terms scale as741

−∇h · (uwuw) = O
(

U2
w

Lm

)
(A1)

− ∂

∂ z
(uwww) = O

(
UwWw

Hm

)
(A2)

−∇h · (uwww) = O
(

UwWw

Lm

)
(A3)

− ∂

∂ z
(wwww) = O

(
WwWw

Hm

)
(A4)

−∇h · (uwbw) = O
(

f
Ωw

UwBw

Lm

)
(A5)

− ∂

∂ z
(wwbw) = O(0) , (A6)

where one has additionally made use of the GW polarization relations as given in (83); e.g. for the742

buoyancy-flux estimates: due to the phase shift between momentum and buoyancy, the fluxes obey743

the relations ℜ{ũb̃∗}= O( f LwBw) = O( f/Ωw UwBw), and ℜ{w̃b̃∗}= 0, with tilde indicating the744

sub-mesoscale wave amplitudes and ∗ denoting the complex conjugate. The convergence terms745

above are to be compared to the horizontal acceleration in the horizontal momentum equation, the746

buoyancy time derivative in the buoyancy equation, and the buoyancy in the vertical momentum747

equation for the mesoscale flow. These terms scale as748

∂um

∂ t
= O

(
Um

Tm

)
(A7)

bm = O(Bm) (A8)

∂bm

∂ t
= O

(
Bm

Tm

)
. (A9)

Using these scalings the following ratios for the horizontal momentum equation are found (al-749

ways neglecting the modulationally unstable strongly non-hydrostatic sub-mesoscale regime in750
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(14)):751

−∇h · (uwuw)
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The comparisons for the vertical momentum equation yield752
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and753

−∂ (wwww)/∂ z
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and for the buoyancy equation one obtains754

−∇h · (uwbw)

∂bm/∂ t
= O

(
Lw

Lm

)
� 1 . (A14)

One sees that the sub-mesoscale wave field can impact the mesoscale flow only via the hori-755

zontal momentum equation. Two options exist: (i) The first is the impact of the low-frequency756

sub-mesoscale waves via horizontal momentum-flux convergence, see (A10). Equality be-757

47



tween this flux term and the mesoscale-flow horizontal acceleration is reached when, using (6),758

1 = (1/η)(L2
w/L2

m) = η2p−1. Hence in this regime p = 1/2. For an appreciable scale separation759

in the horizontal (see (6)), one would expect η1/2 = O(10−1), say. This however implies very760

small η , so that the mesoscale-wave amplitude (9) that can be affected is very low. Without show-761

ing this in any detail, it is also mentioned that in this case the sub-mesoscale-wave frequency is762

dominated by the intrinsic part, while the Doppler term is small. This means that the mesoscale-763

flow impact on these waves is rather weak. (ii) The second and more interesting option involves764

the impact of the mid-frequency sub-mesoscale waves via vertical momentum-flux convergence,765

see (A11). Equality between flux convergence and the mesoscale-flow horizontal acceleration is766

reached here, using (4) and (6), when 1 = ηawN∗/ f = η2−p. Hence in this regime p = 2, and767

the horizontal length-scale separation η2 and the vertical length-scale separation η can be small768

with η = O(10−1), say, so that the mesoscale-wave amplitude that can be affected is stronger than769

in the first option. The possible range of η can be determined from the condition that the sub-770

mesoscale waves shall be in the mid-frequency range so that f/N∗ < aw ≤ 1. Together with (7)771

and the requirement of a sufficiently strong scale separation η � 1 this implies (16).772
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TABLE 1. Overview of the appropriate scales for the interaction between mesoscale flow (subscript m) and

sub-mesoscale (subscript w) motions.

960

961

Mesoscale GW Sub-mesoscale GW

Vertical length scale Hm Hw = ηHm

Horizontal length scale Lm = N∗
f Hm Lw = η2Lm

Time scale Tm = f−1 Tw = ηTm

Scale of buoyancy amplitude Bm = ηN2
∗Hm Bw = Bm

Scale of horizontal wind amplitude Um = ηN∗Hm Uw =Um

Scale of vertical wind amplitude Wm = η f Hm Ww = η−1Wm

Scale of pressure fluctuation amplitude Pm = ηN2
∗H2

m Pw = ηPm
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TABLE 2. Synopsis of the relevant general model parameters. Here, n.a. indicates that the parameter is

not used in this specific model setup. The time step ∆t is determined through the CFL criterion; due to stability

reasons there is an upper threshold for ∆t in PincFloit-WKB. There the total number of ray volumes corresponds

to the product of the number of grid cells in the 5 σ -box, and the corresponding number per grid cell and spatial

direction ñx,ray or ñz,ray, respectively. The smoothing parameter indicates the total number of grid cells in both

directions, which are used for the respective local smoothing. A value of 3 means e.g. a smoothing over one

gridcell and its direct neighbours (3×3 - window).

962

963

964

965

966

967

968

Configuration parameter PincFloit-WKB PincFloit-LES

Boundary conditions periodic in x and z*

Resolution ∆x×∆z test case-dependent 30.5 m×4.9 m

Time step ∆t dynamic, CFL = 0.5,∆tmax = 2 s dynamic, CFL = 0.5,∆tmax = 1 s

Wave number interval ∆m0 ∆m0 = 10−4 m−1 n.a.

Number of ray volumes nray nray =
5 σx
∆x ñx,ray× 5 σz

∆z ñz,ray n.a.

Smoothing parameter Momentum flux: ns,uw = 3 Dynamic Smagorinsky: ns,dyn = 5

* Except for the pseudo-incompressible simulation PSINC, where rigid boundaries are assumed in the vertical.
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TABLE 3. Essential parameters for the initialization of a sub-mesoscale wave packet in different test cases.

Here, n.a. indicates that the parameter is not used in this specific test case setup, i.e. there is no PincFloit-WKB

simulation for the case PSINC. The frequency ω̂0 = Ω̂+ shall indicate that the positive branch of the dispersion

relation (58) is chosen. Except for the case COR it is f = 10−4 s−1.

969

970

971

972

Test case REF AMP1 AMP2 COR PSINC SCALE

Simulation time t 12 f−1 = 120000 s = 2000 min≈ 33.3 h

Model domain Lx×Lz 500 km×10 km⇔ 5 Lm×10 Hm 10 Lm×5 Hm*

GP number P.F.-LES nx×nz 16384×2048 32768×1024

GP number P.F.-WKB nx×nz 51×101 n.a. 101×401

Resolution P.F.-WKB ∆x×∆z 10 km×0.1 km n.a. 10 km×0.025 km

Ray vol’s P.F.-WKB ñx,ray× ñz,ray 20×5 n.a. 20×5

Amplitude ã 0.5 0.1 1.0 0.5 0.5 0.5

Horizontal wave number k 2π/1000 m−1

Vertical wave number m0 −2π/100 m−1

Frequency ω̂0 Ω̂+

Initial vertical position z0 2 km

Initial horizontal position x0 250 km 500 km

Vertical standard deviation σz 0.5 km 0.158 km

Horizontal standard deviation σx 50 km 158.113 km

Background stratification N 0.02 s−1

Coriolis parameter f 10−4 s−1 0 10−4 s−1

* In PincFloit-WKB 10 Lm×10 Hm are used.
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e.g. the initial buoyancy field. The peak amplitude is chosen to be ã = 1. The green dashed976
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according to: (a) PincFloit-WKB-1DNF; (b) PincFloit-WKB-1D; (c) PincFloit-WKB-1.5D;991

(d) PincFloit-LES. In addition, (a) is overlayed with the theoretically derived phase lines992

(phase difference: π) and characteristics from figure 2. . . . . . . . . . . . 66993

Fig. 5. Test case REF with initial amplitude ã = 0.5. Hovmöller diagram of the horizontally aver-994
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(a) PincFloit-WKB-1.5D; (b) PincFloit-LES. . . . . . . . . . . . . . . 67996
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Fig. 7. Test case AMP1 with initial amplitude ã = 0.1 at t ≈ 17.3 h ≈ 2π/ f . Spatial distribution1004
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the induced mesoscale horizontal wind speed in x-direction U (in m s−1, colored contours),1006
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(d) PincFloit-LES. Note the different color and gray shading range compared to the previous1008

figures. . . . . . . . . . . . . . . . . . . . . . . . . 691009

Fig. 8. Test case AMP2 with initial amplitude ã = 1.0 at t ≈ 17.3 h ≈ 2π/ f . Spatial distribution1010

of energy density of the sub-mesoscale wave packet εw (in m2 s−2, gray shades), and of1011

the induced mesoscale horizontal wind speed in x-direction U (in m s−1, colored contours),1012

according to: (a) PincFloit-WKB-1.5D; (b) PincFloit-LES. . . . . . . . . . . 701013

Fig. 9. Test case SCALE with initial amplitude ã = 0.5 at t ≈ 17.3 h ≈ 2π/ f . Spatial distribution1014

of energy density of the sub-mesoscale wave packet εw (in m2 s−2, gray shades), and of1015

the induced mesoscale horizontal wind speed in x-direction U (in m s−1, colored contours),1016
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according to: (a) PincFloit-WKB-1.5D; (b) PincFloit-LES. Note the different shown extent1017

of the domain compared to the previous figures; though, the vertical simulation domain in1018

PincFloit-WKB-1.5D has been 10 km, so that ray volumes do not reappear at the model1019

bottom in (a). . . . . . . . . . . . . . . . . . . . . . . 711020

Fig. 10. Test case COR with initial amplitude ã = 0.5 and f = 0 at t ≈ 17.3 h. Spatial distribution1021

of energy density of the sub-mesoscale wave packet εw (in m2 s−2, gray shades), and of1022

the induced mesoscale horizontal wind speed in x-direction U (in m s−1, colored contours),1023

according to: (a) PincFloit-WKB-1.5D; (b) PincFloit-LES. Note the different color range1024

compared to figure 4. . . . . . . . . . . . . . . . . . . . . 721025

Fig. 11. Test case PSINC in a pseudo-incompressible background with initial amplitude ã = 0.5 at1026

t ≈ 17.3 h≈ 2π/ f . Spatial distribution of energy density of the sub-mesoscale wave packet1027

εw (in m2 s−2, gray shades), and of the induced mesoscale horizontal wind speed in x-1028

direction U (in m s−1, colored contours), according to PincFloit-LES. This figure is to be1029

compared with figure 4. . . . . . . . . . . . . . . . . . . . . 731030
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FIG. 1. Schematic illustration of the initial coverage of the wave packet in physical space with a discrete set

of ray volumes, for simplicity sketched as circles. The wave structures represent e.g. the initial buoyancy field.

The peak amplitude is chosen to be ã = 1. The green dashed lines mark amplitude contours with ã = 0.5 and

ã = 0.1. The size of the circles mirrors the corresponding modulus of the phase-space wave-action density N .

The box covers an area of 5 σx×5 σz.

1031

1032

1033

1034

1035

63



0 100 200 300 400 500
horizontal length x [km]

0

2

4

6

8

10

ve
rt

ic
al

h
ei
gh

t
z

[k
m

]

FIG. 2. Induced mesoscale wave pattern according to the kinematic wave theory of section 4c. The limiting

characteristics [z/x]lim (black, solid line), lines of constant wave number |km| (dotted lines) and lines of constant

phase (green lines) for a sub-mesoscale wave packet as in section 4d, case REF or AMPx, are shown at a point

of time when the center of the wave packet is located at (250,3.9) km. The initial position of the center of the

wave packet chosen for the test case studies is indicated by the intersection of the dashed lines.
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FIG. 3. Initial condition in the test case REF: Spatial distribution of energy density of the sub-mesoscale wave

packet εw (in m2 s−2) in PincFloit-LES.
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FIG. 4. Test case REF with initial amplitude ã = 0.5 at t ≈ 17.3 h ≈ 2π/ f . Spatial distribution of energy

density of the sub-mesoscale wave packet εw (in m2 s−2, gray shades), and of the induced mesoscale hori-

zontal wind speed in x-direction U (in m s−1, colored contours), according to: (a) PincFloit-WKB-1DNF; (b)

PincFloit-WKB-1D; (c) PincFloit-WKB-1.5D; (d) PincFloit-LES. In addition, (a) is overlayed with the theoret-

ically derived phase lines (phase difference: π) and characteristics from figure 2.
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FIG. 5. Test case REF with initial amplitude ã = 0.5. Hovmöller diagram of the horizontally averaged,

induced mesoscale horizontal wind speed in x-direction U (in m s−1), according to: (a) PincFloit-WKB-1.5D;

(b) PincFloit-LES.
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FIG. 6. Test case REF with initial amplitude ã = 0.5. (a) Vertical distribution of the vertical group velocity

cgz; (b) vertical distribution of the vertical wave number m of the ray volumes in a column close to the horizontal

center of the wave packet according to PincFloit-WKB-1D. The simulation time has been extended for this

specific run to t = 19.2/ f ≈ 53.3 h. Different colors indicate different time instances. Due to the periodic

boundary conditions, one observes ray volumes propagating through the model top and reappearing at the model

bottom close to the end of the simulation.
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FIG. 7. Test case AMP1 with initial amplitude ã = 0.1 at t ≈ 17.3 h ≈ 2π/ f . Spatial distribution of en-

ergy density of the sub-mesoscale wave packet εw (in m2 s−2, gray shades), and of the induced mesoscale

horizontal wind speed in x-direction U (in m s−1, colored contours), according to: (a) PincFloit-WKB-1DNF;

(b) PincFloit-WKB-1D; (c) PincFloit-WKB-1.5D; (d) PincFloit-LES. Note the different color and gray shading

range compared to the previous figures.
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FIG. 8. Test case AMP2 with initial amplitude ã = 1.0 at t ≈ 17.3 h ≈ 2π/ f . Spatial distribution of energy

density of the sub-mesoscale wave packet εw (in m2 s−2, gray shades), and of the induced mesoscale horizontal

wind speed in x-direction U (in m s−1, colored contours), according to: (a) PincFloit-WKB-1.5D; (b) PincFloit-

LES.
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FIG. 9. Test case SCALE with initial amplitude ã = 0.5 at t ≈ 17.3 h≈ 2π/ f . Spatial distribution of energy

density of the sub-mesoscale wave packet εw (in m2 s−2, gray shades), and of the induced mesoscale horizontal

wind speed in x-direction U (in m s−1, colored contours), according to: (a) PincFloit-WKB-1.5D; (b) PincFloit-

LES. Note the different shown extent of the domain compared to the previous figures; though, the vertical

simulation domain in PincFloit-WKB-1.5D has been 10 km, so that ray volumes do not reappear at the model

bottom in (a).
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FIG. 10. Test case COR with initial amplitude ã = 0.5 and f = 0 at t ≈ 17.3 h. Spatial distribution of

energy density of the sub-mesoscale wave packet εw (in m2 s−2, gray shades), and of the induced mesoscale

horizontal wind speed in x-direction U (in m s−1, colored contours), according to: (a) PincFloit-WKB-1.5D; (b)

PincFloit-LES. Note the different color range compared to figure 4.
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FIG. 11. Test case PSINC in a pseudo-incompressible background with initial amplitude ã = 0.5 at t ≈

17.3 h ≈ 2π/ f . Spatial distribution of energy density of the sub-mesoscale wave packet εw (in m2 s−2, gray

shades), and of the induced mesoscale horizontal wind speed in x-direction U (in m s−1, colored contours),

according to PincFloit-LES. This figure is to be compared with figure 4.
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