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senschaften/Geographie, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt/Main, Germany
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ABSTRACT

We address the question of parameterizing the subgrid scales in simula-

tions of geophysical flows by applying stochastic mode reduction to the one-

dimensional stochastically forced shallow water equations. The problem is

formulated in physical space by defining resolved variables as local spatial

averages over finite-volume cells and unresolved variables as corresponding

residuals. Based on the assumption of a time-scale separation between the

slow spatial averages and the fast residuals, the stochastic mode reduction pro-

cedure is used to obtain a low-resolution model for the spatial averages alone

with local stochastic subgrid-scale parameterization coupling each resolved

variable only to a few neighboring cells. The closure improves the results

of the low-resolution model and outperforms two purely empirical stochastic

parameterizations. It is shown that the largest benefit is in the representation

of the energy spectrum. By adjusting only a single coefficient (the strength of

the noise) we observe that there is a potential for improving the performance

of the parameterization, if additional tuning of the coefficients is performed.

In addition, the scale-awareness of the parameterizations is studied.
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1. Introduction26

Atmospheric processes encompass a large spectrum of spatial and temporal scales. These range27

from several millimeters and seconds for boundary layer turbulence up to 107 meters and several28

weeks (and even longer) for planetary wave dynamics. Due to limited computer resources numeri-29

cal atmospheric models cannot describe all these processes on all scales simultaneously. However,30

the different scales are interacting in a complex manner and this leads to the challenging problem31

of parameterizing the effect of the unresolved subgrid-scale (SGS) processes onto the resolved32

ones. Examples include the parameterization of synoptic and mesoscale eddies in planetary scale33

atmospheric models (e.g. Petoukhov et al. 2000; Weaver et al. 2001), momentum and tempera-34

ture fluxes in the atmospheric boundary layer (Stull 1988) or SGS Reynold stresses in large eddy35

simulations (e.g. Pope 2000).36

In this context, stochastic elements have become increasingly popular. Stochastic parameteriza-37

tions can reduce a systematic model error, represent uncertainty in predictions, or trigger regime38

transitions (e.g., Palmer 2001; Berner et al. 2017). Typically some ad-hoc SGS model is assumed39

and the corresponding coefficients are optimized (tuned) so as to obtain the best possible agree-40

ment, in some sense, with observations or high-resolution simulations. Examples in comprehen-41

sive climate and weather models are stochastically perturbed parameterization tendencies (Buizza42

et al. 1999; Palmer et al. 2009) or stochastic kinetic energy backscatter (Shutts 2005; Berner et al.43

2009). Empirical Ornstein-Uhlenbeck (OU) processes have been used in some studies of low-44

frequency and large-scale atmospheric variability (e.g. Winkler et al. 2001; Newman et al. 2003;45

Pegion and Sardeshmukh 2011), which can be extended to include quadratic nonlinearities as well46

as a time correlated stochastic forcing (Kravtsov et al. 2005; Kondrashov et al. 2005).47
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With regard to SGS parameterizations in climate models issues can arise from the fact that48

they are typically tuned to optimally represent the statistics of the present-day climate. If cli-49

mate changes due to some external forcing, it is not guaranteed that the tuned parameters are still50

optimal. The fluctuation-dissipation theorem might be able to provide corrections (Achatz et al.51

2013; Pieroth et al. 2018) in some cases, but such an approach relies on the perturbations being52

sufficiently weak. Moreover, there is a need for scale-aware parameterizations in atmosphere mod-53

eling, as model resolution increases continuously and mesh refinement techniques become widely54

used. In addition, the consistency between particular SGS parameterizations and the numerical55

discretization becomes important.56

These considerations motivate the development of other approaches where the SGS parameter-57

ization is derived from first principles, if possible without any empirical parameter optimization.58

The direct interaction approximation (DIA) introduced by Kraichnan (1959) allowed to success-59

fully apply statistical dynamical closure theory in relevant geophysical flows (Frederiksen and60

Davies 1997; Frederiksen 1999; Frederiksen et al. 2003). In the presence of time scale separation,61

the asymptotic method of averaging has been applied (Hasselmann 1976; Imkeller and von Storch62

2001; Arnold et al. 2003; Monahan and Culina 2011). This method requires an estimation of the63

invariant measure of the fast scales conditioned on the slow scales, which might limit its applicabil-64

ity when going to high-dimensional systems. Another promising approach, without any empirical65

component, is based on the maximum entropy principle (Verkley 2011; Verkley and Severijns66

2014; Verkley et al. 2016). Recently, Wouters and Lucarini (2012, 2013) have introduced a new67

method originating from response theory. This method relies on a weak coupling between resolved68

and unresolved scales and it has been applied to simple and more complex settings (Wouters et al.69

2016; Demaeyer and Vannitsem 2017; Vissio and Lucarini 2017).70
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The DIA parameterization has been successfully applied to barotropic (Frederiksen and Davies71

1997) and primitive equations model (Frederiksen et al. 2003), it has been extended to include the72

effects of mean flow and topography (Frederiksen 1999). The DIA closure is derived in spectral73

space by considering the evolution of second-order cumulant and response function. Next, the74

nonlinear damping rate and nonlinear noise are introduced. This results in a globally coupled SGS75

model in spectral space. However, techniques have been proposed to simplify the equations and76

obtain locally coupled models reproducing the spectra from direct numerical simulations (Fred-77

eriksen and Davies 1997; Frederiksen et al. 2003).78

Another nearly self-consistent possibility that exploits a separation of time scales between re-79

solved and unresolved scales is the stochastic mode reduction (SMR) procedure proposed by Ma-80

jda et al. (2001, 2002, 2003). The SMR is a homogenization technique for multiscale systems81

(Khasminsky (1966b,a); Kurtz (1973); Papanicolaou (1976) and a recent overview Pavliotis and82

Stuart (2008) and references therein) and it is supplemented by an empirical step, where the fast83

SGS self-interactions in the evolution equation for the unresolved modes are replaced by an OU84

process. Following this step, an analytical derivation of a stochastic parameterization for the fast85

modes is possible, rigorously valid in the limit of infinite time scale separation.86

So far the SMR procedure has already been applied to balanced models, such as barotropic87

(Franzke et al. 2005) and quasi-geostrophic (Franzke and Majda 2006) dynamics. The separa-88

tion between resolved and unresolved scales has been performed by using empirical orthogonal89

functions (EOFs). However, EOFs are sometimes not able to guarantee a sufficient separation90

of the underlying time scales (e.g., see Figure 3 in Franzke and Majda 2006). The SMR carried91

out in spectral space (Franzke et al. 2005; Franzke and Majda 2006) is quite similar to the DIA92

closure approach. In particular, the main goal of both techniques is to represent the subgrid pro-93
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cesses by a nonlinear damping and a state-dependent noise and both techniques have been utilized94

successfully in geophysical flows.95

In applications of the SMR to spectral space the resulting reduced model is globally coupled96

with linear, quadratic and even cubic terms. This hampers the applicability of the technique when97

high-dimensional systems with large number of resolved modes are considered. However, the98

latter problem can be avoided by applying the SMR in physical space to a finite-volume dis-99

cretization of the equations. Such discretization does not per se include global coupling as in100

spectral discretizations, since grid cells interact directly only with a small number of neighbors.101

Finite-volume schemes are traditionally applied in ocean models (e.g. Haidvogel and Beckmann102

1999), regional atmospheric modeling (e.g. Skamarock and Coauthors 2008) and recently even for103

global atmospheric models as well (Rı́podas et al. 2009; Majewski et al. 2002; Satoh et al. 2008).104

In the examples above complex boundaries, such as continental boundaries in ocean modeling or105

non-periodic lateral boundaries in regional area atmospheric modeling, necessitate the use of dis-106

cretizations and SGS parameterizations formulated in physical space. This motivated Dolaptchiev107

et al. (2013a,b) to consider a local approach where the resolved variables are defined by local108

spatial averages and the SGS flow by deviations from these averages, a configuration typically en-109

countered in large-eddy turbulence parameterization (e.g. Pope 2000). The local definition leads110

to a local SGS parameterization, coupling only near neighbors, as shown for the Burgers equa-111

tion (Dolaptchiev et al. 2013a,b). The efficient local stochastic SGS parameterization allows to112

consider large numbers of resolved scales. In addition, the clear gap of spatial scales between the113

resolved and unresolved variables enables a more pronounced time-scale separation.114

Obviously Burgers equation represents a highly idealized prototype model for testing various115

statistical and closure methods and it is necessary to verify the applicability of the SMR for local116

spatial averages for more realistic fluid-dynamical models. One step in this direction is performed117
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in this work by applying the approach to a stochastically forced one-dimensional shallow water118

layer (1DSW). It incorporates at least two issues of relevance in the general context. First, in119

contrast to the Burgers equation the 1DSW allows for gravity waves. Secondly, if formulated120

in flux form, the shallow-water flow dynamical equations entail non-polynomial nonlinearities.121

This problem is of broader relevance, since such highly nonlinear terms appear in the general122

compressible fluid flow equations as well, in the pressure-gradient acceleration.123

The work presented here can be summarized as follows. Based on a high-resolution finite-124

volume discretization of the shallow-water equations we use in Sec. 2 local spatial averages to125

define coarse and slow (resolved) variables and, via corresponding residuals, fine and fast (unre-126

solved) variables. The assumed time-scale separation is verified numerically. The SMR theory127

for obtaining an SGS parameterization of the unresolved modes is then introduced and applied to128

the specific problem. In Sec. 3 we discuss the practical implementation, and also introduce, for129

comparison, two purely empirical approaches. Results from model simulations with the various130

SGS parameterizations are then compared in Sec. 4. Here we also investigate the scale awareness131

of the approaches, i.e. their ability to be applied at different resolutions without any re-tuning.132

Conclusions are finally drawn in Sec. 5.133

2. Method134

a. Shallow water model135

We consider a stochastically forced one dimensional shallow water layer with periodic bound-136

aries, using as variables the height of the fluid h and the momentum hu, where u is the velocity.137

The governing equations with plane topography (e.g. Vallis 2006) read in flux form138
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∂t

 h

hu

=−∂x

 hu−ν∂xh

(hu)2

h + g
2h2−ν∂xhu

+ρρρ, (1)

with a large-scale stochastic forcing ρρρ (see Sec. 3) and a mass weighted diffusion with the139

constant parameter ν .140

For a high-resolution spatial discretization the domain of length L is divided into N fine intervals141

∆x = L/N , labelled by a small index i ∈ {0,1, ...,N− 1}. With this the equations in (1) can be142

discretized by a symmetric finite-volume scheme143

d
dt

 hi

hui

=− 1
∆x

(
Fi+ 1

2
−Fi− 1

2

)
+ρρρ i , (2)

with the discrete forcing ρρρ i and the flux at the boundary given by144

Fi+ 1
2
=

1
2

 (hu)i+1 +(hu)i−2ν
hi+1−hi

∆x
(hu)2

i+1

hi+1
+

(hu)2
i

hi
+

g
2

h2
i+1 +

g
2

h2
i −2ν

(hu)i+1− (hu)i

∆x

 . (3)

The discrete flux form (2) conserves total mass 1
N ∑

N−1
k=0 hk and total momentum 1

N ∑
N−1
k=0 huk in145

the absence of forcing. Given our choice of forcing and dissipation, the number of fine cells is146

chosen large enough so as to resolve all processes occurring. Hence in the following simulations147

using (2) , with N large enough, will be called direct numerical simulation (DNS).148

b. Local averages149

As a representation of the typical situation of atmospheric models with insufficient resolution,150

we introduce a second discretization, with Nc = N/n coarse cells, each consisting of n fine cells151

of the initial discretization, and labelled by the capital index I ∈ {0,1, ...,Nc−1}. Associated with152
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the coarse grid coarse variables H and HU , also called resolved variables, are defined by local153

spatial averages inside a coarse box154

 HI

HUI

=
1
n

n(I+1)−1

∑
k=nI

 hk

huk

 . (4)

Further, fine variables h′ and hu′, referred to as unresolved or SGS variables, are defined using155

the deviations of the initial variables from the corresponding coarse variables156

 h′i

hu′i

=

 hi

hui

−
 HI[i]

HUI[i]

 . (5)

I[i] denotes here the index of the coarse cell with the i-th fine cell placed inside. The coarse and157

fine variables can be used to express (2) as158

d
dt

 HI

HUI

=−
F(I+1)n− 1

2
−FnI− 1

2

n∆x
+ρρρ I , (6)

d
dt

 h′i

hu′i

=−
Fi+ 1

2
−Fi− 1

2

∆x
+

F(I[i]+1)n− 1
2
−FI[i]n− 1

2

n∆x
, (7)

where we assume that the forcing ρρρ I acts only onto the coarse variables. By collecting all159

resolved variables HI,HUI in one vector x ∈ RMc and all SGS variables h′i,hu′i in another vector160

z ∈ RM with Mc = 2Nc and M = 2N, (6) and (7) can be rewritten as161

ẋi =ρ
x
i +ax

i (x)+bxz
i (x,z) , (8)

żi =bz
i (x,z)+ cz

i (z) . (9)
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Here ρx
i results from the forcing and terms have been regrouped so as to identify the coarse162

variable self-interactions ax
i (x), the coupling terms bxz

i (x,z), bz
i (x,z) and the fine variable self-163

interactions cz
i (z). Complete neglect of the SGS variables yields the bare-truncation model164

ẋi = ρ
x
i +ax

i (x) . (10)

This low resolution model is defined on the coarse grid with Nc grid cells and it lacks an SGS165

parameterization.166

c. Stochastic Mode Reduction167

1) QUADRATIC APPROXIMATION168

A difficulty in the application of SMR is caused by the terms involving 1/h in the flux (3) , as169

they represent a nonlinearity of an arbitrary order. So far SMR has only been applied to systems170

with quadratic nonlinearities. It can, however, handle nonlinearities of arbitrary polynomial form.171

Hence a solution could be expanding everywhere but in ax
I (x) terms with 1/h in a finite Taylor172

series around the mean fluid height H . It turns out sufficient, however, to simply replace 1/h ≈173

1/H in order to reproduce the statistics of the DNS. Thus, the bare truncation part of the model is174

computed exactly but in all other terms involving SGS modes this approximation is used, leading175

to an approximation of (8) and (9), where SGS-variable nonlinearities take a quadratic form176

ẋi =ρ
x
i +ax

i (x)+
(

Lxz
i j z j +Bxxz

i jk x jzk +Bxzz
i jkz jzk

)
, (11)

żi =
(

Lzx
i j x j +Bzxx

i jk x jxk +Bzxz
i jkx jzk

)
+
(

Lzz
i jz j +Bzzz

i jkz jzk

)
. (12)
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Here and in the following we make use of Einstein’s summation convention and the summation177

index is running up to either Mc or M depending on if x or z is involved. The linear and quadratic178

interaction coefficients Lxz
i j , Lzx

i j , Lzz
i j , Bxxz

i jk , Bxzz
i jk , Bzxx

i jk , Bzxz
i jk , Bzzz

i jk are given in Appendix A.179

2) EMPIRICAL OU PROCESS180

The SGS variables zi are not independent, since the corresponding local spatial average over181

a coarse cell vanishes by definition. Thus, one degree of freedom for each coarse cell has to be182

eliminated. This is achieved by Fourier-transforming h′ and hu′ locally inside each coarse cell. The183

Fourier amplitude of the zero-wavenumber is equal to the vanishing local average inside the coarse184

cell. Hence by discarding this wavenumber component one degree of freedom can be eliminated.185

This defines the new independent SGS variables θi186

θi = T̂i jz j (13)

zi = R̂i jθ j , (14)

where the matrices R̂ ∈ RM×M f and T̂ ∈ RM f×M are constructed from the inverse and forward187

Fourier transformation and M f = M−Mc is the number of independent SGS variables. With188

this preparation one can move to the next step of SMR, i.e. replacing the SGS self-interactions189

Lzz
i jz j +Bzzz

i jkz jzk by an empirical OU process. The SGS equation (12) becomes190

dθi =T̂ik

(
Lzx

k jx j +Bzxx
k jl x jxl +Bzxz

k jlx jR̂lmθm

)
dt +Γi jθ jdt +σidWi , (15)

where Γi j denote the coefficients of the negative-definite OU drift, σi j =σiδi j those of a diagonal191

diffusion tensor, and dWi Wiener increments. Note that no sum over i is taken in the Wiener term192

in (15). We assume that Γ couples only SGS modes corresponding to the same coarse cell. Under193
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this assumption Γ has a block-diagonal form and the resulting SGS closure is local, coupling only194

neighbors and next-neighbors of a coarse cell. Since SMR assumes further that the OU process195

is the dominant term in the SGS equation (see below), the OU drift Γ can be estimated from the196

lagged covariance of θθθ (Gardiner 2009)197

θθθ(t)θθθ T (t + τ) =C(τ) =C(0)eΓT τ , (16)

where (·) denotes a time average. By integrating over time one can solve for Γ198

(
Γ

T)−1
=−C(0)−1

∫
∞

0
C(τ)dτ . (17)

The computation of the time integral in (17) is performed using the numerically efficient Cooper-199

Haynes algorithm (Lutsko et al. 2015). Note that despite the block-diagonal form, Γ still allows for200

a coupling between both SGS variables h′i and hu′i inside each coarse cell. Because of the spatial201

homogeneity of the considered shallow-water model the coefficients of Γ are the same for each202

matrix block and can be obtained by averaging over the estimates from the different coarse cells.203

Using the steady Lyapunov equation ΓC(0)+C(0)ΓT =−σσT , the diagonal diffusion coefficients204

are found from205

σi =
√
−2ΓikC(0)ki . (18)

Moreover, it has turned out to be useful to observe that in typical applications Γ is diagonalizable206

and has distinct eigenvalues (e.g., Delsole 2004). We hence introduce new variables yi207

yi =U−1
i j θ j , (19)
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where the real invertible matrix U is from the real Jordan canonical form decomposition of Γ208

Γ =UΛU−1 . (20)

By applying the transformation matrices R = R̂U and T =U−1T̂ , the model equations (11) and209

(15) can be written in terms of the new variables as210

ẋi =ρ
x
i +ax

i (x)+bx
i (x,y) , (21)

ẏi =by
i (x,y)+Λi jy j +ΣiẆi . (22)

Here we use the notation211

bx
i (x,y) =Lxz

i j R jkyk +Bxxz
i jk Rklx jyl +Bxzz

i jkR jlRkmylym

=Lxy
i j y j +Bxxy

i jk x jyk +Bxyy
i jk y jyk , (23)

by
i (x,y) =Ti j

(
Lzx

jkxk +Bzxx
jkl xkxl +Bzxz

jklRlmxkym

)
=Lyx

i j x j +Byxx
i jk x jxk +Byxy

i jk x jyk , (24)

and we have also introduced effective drift coefficients Σi =
√

U−1
i j U−1

i j σ2
j with pairwise iden-212

tical noise parameters for pairs of complex eigenvalues, see Appendix C in Dolaptchiev et al.213

(2013a) for the details.214

3) HOMOGENIZATION215

The remaining step is the derivation of an effective equation for the coarse variable x alone,216

using the homogenization technique (Majda et al. 2001; Pavliotis and Stuart 2008), with terms217

taking SGS effects into account. The main assumption of the SMR is the presence of distinct218
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time scales in the considered variables. So far the model is spatially separated into coarse and fine219

variables. This does not necessarily imply a separation of the underlying time scales. However, as220

it will be shown later, for the considered regime the separation in space also induces a separation221

in time, with the resolved variable x acting on a slower time scale than the SGS variable y. Hence a222

time-scale separation factor ε� 1 is introduced to characterize the different time scales associated223

with the different terms on the right hand side of (21) and (22). We replace bx→ bx/ε , by→ by/ε ,224

and Λi jy j +ΣiẆi→ Λi jy j/ε2 +ΣiẆi/ε , where then bx, by, Λi jy j, and ΣiẆi are all O(1), obtaining225

ẋi =ρ
x
i +ax

i (x)+
1
ε

bx
i (x,y) , (25)

ẏi =
1
ε

by
i (x,y)+

1
ε2 Λi jy j +

1
ε

ΣiẆi . (26)

The above scaling implies that the bare truncation part ρx +ax(x) acts on the slowest, the cou-226

pling terms bx and by on a faster and the SGS self-interactions on the fastest time scale. In the227

following the corresponding backward Fokker-Planck equation (FPE)228

∂t p =L3 p+
1
ε

L2 p+
1
ε2 L1 p , (27)

for the probability density function (PDF) p is considered, in the limit of an infinite time scale229

separation ε → 0. The operators on the right hand side are defined as230

L3 =− (ρx
i +ax

i (x))∂xi , (28)

L2 =−bx
i (x,y)∂xi−by

i (x,y)∂yi , (29)

L1 =−Λi jy j∂yi−
Σ2

i
2

∂
2
yi
. (30)
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Next, the PDF in (27) is expanded in terms of ε: p = p0 + ε p1 + ε2 p2 + ..., which leads to the231

following set of equations232

O(ε−2) : 0 =L1 p0 , (31)

O(ε−1) : 0 =L2 p0 +L1 p1 , (32)

O(ε0) : p0 =L3 p0 +L2 p1 +L1 p2 . (33)

The leading order O(ε−2)-equation shows that p0 is in the null space of L1 and therefore it233

does not depend on the fast variables: p0 = p0(x). The O(ε−1)-equation can be solved for p1:234

p1 =−L−1
1 L2 p0 if the solvability condition235

PL2 p0 = 0 (34)

is satisfied, where the projection operator P, projecting onto the null space of L1 is utilized. With236

this result the last O(ε0)-equation can be written as an effective FPE for p0 only237

∂t p0 = L3 p0−PL2L−1
1 L2 p0 . (35)

This is the backward FPE of a low-resolution model, for the coarse variables alone, which238

consists of the bare truncation part L3 p0 and an SGS parameterization PL2L−1
1 L2 p0. The null-239

space projection P and inverse of the OU operator L1 are detailed in Appendix B. Using these,240

one finds that the stochastic differential equation corresponding to the effective FPE (35) can be241

written as242

dxi = [ρx
i +ax

i (x)+βi(x)]dt +dξi(x) . (36)
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Here βi represents the deterministic part and dξi the stochastic part of the SGS parameterization,243

containing both additive and multiplicative noise terms. One finds that the deterministic closure βi244

is245

βi =
∫

∞

0
dτ

〈
bx

j(x,y)
∂bx

i (x,y(τ))
∂x j

〉
+ 〈yyT 〉−1

jm

∫
∞

0
dτ

〈
ymby

j(x,y)b
x
i (x,y(τ))

〉
−
∫

∞

0
dτ

〈
∂by

j(x,y)
∂y j

bx
i (x,y(τ))

〉
, (37)

where the expectations 〈·〉 are taken over the OU statistics, and y represents an OU trajectory246

with initial condition y = y(0). The stochastic closure dξi takes the form247

dξi =
√

2Bi jdWj , (38)

where the matrix elements Bi j are obtained from the decomposition248

BikB jk =
∫

∞

0
dτ
〈
bx

i (x,y(0))b
x
j(x,y(τ))

〉
. (39)

With these results one can also show that back-transforming bx/ε → bx, by/ε → by, and249

Λi jy j/ε2 +ΣiẆi/ε → Λi jy j +ΣiẆi leaves β and dξ unchanged so that (36) is the desired low-250

resolution model.251

Finally getting back to the specific case, (21) – (24) , Appendix C shows that the solvability con-252

dition (34) is satisfied. Moreover, inserting (23) and (24) for bx and by yields253
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βi =
(

Lxy
m j +Bxxy

ml jxl

)
Bxxy

imk(CS) jk

+
(
Lyx

moxo +Byxx
mopxoxp

)(
Lxy

ik +Bxxy
i jk x j

)
〈yyT 〉−1

mn(CS)nk

+Bxyy
i jk Byxy

mpoxp〈yyT 〉−1
mn(CT )on jk , (40)

where the tensors CS and CT are given by254

(CS) jk =
∫

∞

0
dτ〈y j(0)yk(τ)〉 , (41)

(CT )on jk =
∫

∞

0
dτ
(
〈yo(0)y j(τ)〉〈yk(τ)yn(0)〉+ 〈yo(0)yk(τ)〉〈y j(τ)yn(0)〉

)
. (42)

With this the decomposition (39) becomes255

BikB jk = Bxyy
imn(CT )mnklB

xyy
jkl +

(
Lxy

in +Bxxy
ikn xk

)
(CS)nm

(
Lxy

jm +Bxxy
jlmxl

)
. (43)

The prescription would be to perform this decomposition every time step. However, this would256

be very expensive. Therefore we neglect cross-correlations between the dξi in different cells and257

approximate them by258

dξi ≈
√

2Bi jBi jdWi ,

=
√

2Bxyy
i jn (CT ) jnklB

xyy
ikl dW 1

i +

√
2
(

Lxy
in +Bxxy

i jn x j

)
(CS)nk

(
Lxy

ik +Bxxy
ilk xl

)
dW 2

i , (44)

which we call effective stochastic forcing. In each coarse cell the approximated stochastic term259

has thus the same variance as its exact counterpart. The stochastic term (44) consists of an additive260

part, which acts on both variables, and a multiplicative part, that acts only on HU . An important261

feature of the SGS parameterization, with deterministic part (40) and stochastic component (44),262
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is that it couples a volume cell only to its neighbors and next neighbors. This allows application263

of the approach to large systems.264

3. Test case and model suite265

For the validation of our approach we consider a stochastically forced periodic shallow-water266

layer of horizontal extent L = 104 km and mean height H = 10 km. The diffusion constant is267

ν = 105 km2 day-1 . A large-scale stochastic forcing (Chekhlov and Yakhot 1995) is applied to268

the momentum equation269

ρρρ I =

 0

∑
3
k=1

µαk√
k∆t

cos
(

2π

(
kIn∆x

Lx
+ψk

))
 . (45)

Normally distributed random numbers αk and ψk are used, the amplitude parameter µ is 105
270

km2/day
3
2 and the forcing acts onto the leading Fourier modes 1 ≤ k ≤ 3. Various model set-ups271

have been chosen as follows, a summary is given in Table 2. In all cases the integrations have been272

done over 104days with 103 outputs per day.273

a. High-resolution simulations274

1) DNS275

Reference is provided by direct numerical simulations, integrating (2) with N = 512 volume276

cells. A 4th-order Runge-Kutta-scheme is used, with a time step ∆t = 10−4 days.277

2) OU-DNS278

In two intermediate steps in the application of the SMR, first the nonlinearities affected by279

SGS dynamics have been kept quadratic by replacing 1/h→ 1/H , and then the SGS nonlinear280

self-interactions have been replaced by an empirical OU process, leading to the system (21) and281
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(22). Direct integration of these equations, henceforth termed OU-DNS, thus appears as a useful282

check of the validity of the SMR approach. However, directly using the OU parameters estimated283

from (17) and (18) turned out not to be stable enough. Therefore following Achatz and Branstator284

(1999) an additional scale-selective damping has been supplemented to the OU drift in each coarse285

cell. This has been done in the spectral representation of the latter, see (15), by replacing286

Γ→ Γ+


γ . . . 0

... . . . ...

0 . . . γ

 , with γ =−α


12 . . . 0

... . . . ...

0 . . . (n−1)2

 ∈ R(n−1)×(n−1) .

The diagonal matrix γ represents damping of the Fourier modes inside each coarse cell with an287

amplitude proportional to the squared wave number, with here α = 90 day−1. As also in all other288

stochastic integrations outlined below, the time integration has been done by a split-step method289

with a 4th-order Runge-Kutta step for the deterministic part and an Euler-Mayurama step for the290

stochastic part. The time step is ∆t = 10−4day, as in the deterministic DNS.291

b. Low-resolution simulations292

With the high-resolution simulations as reference we can validate the SMR approach for provid-293

ing an SGS parameterization for low-resolution models that only use the coarse cells. We compare294

the performance of this approach also to that of more simple purely empirical parameterizations.295

Considered approaches are as follows where, unless otherwise stated, the number of coarse cells296

employed was always Nc = 64 with an averaging interval of n = 8.297
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1) LOW-RESOLUTION SIMULATIONS WITHOUT SGS PARAMETERIZATION298

Two slightly different approaches have been chosen to obtain low-resolution models. The first is299

defined by the original discretized equations (2), but with a lower spatial resolution of Nc = N/n.300

This is henceforth referred to as low-resolution model (LRM). The second variant is the bare-301

truncation model (BRT) defined in (10), with a resolution of Nc as well. The difference between302

BRT and LRM is the diffusion in the models. In the BRT it is proportional to ν/(n∆x2), and in the303

LRM to ν/(n∆x)2, implying that the BRT has an effective diffusion by a factor n stronger, when304

compared to the LRM.305

2) LOW-RESOLUTION SIMULATIONS WITH SGS PARAMETERIZATION306

Three types of low-resolution simulations with stochastic SGS parameterization have been307

tested.308

(i) SMR parameterization. The low-resolution model (36) to be validated is the BRT supple-309

mented by the SMR SGS parameterization consisting of the deterministic and stochastic compo-310

nents (40) and (44), it is referred to as BRT-SMR. For stability reasons the BRT-SMR diffusivity311

had to be increased in corresponding simulations to ν = 2 ·105 km2day−1. The time step employed312

was ∆t = 2 ·10−5day.313

(ii) Empirical OU parameterizations for BRT and LRM. As a quality measure for the SMR ap-314

proach we also consider low-resolution simulations with an empirical OU SGS parameterization,315

denoted by BRT-OU or LRM-OU, depending on the low-resolution dynamical core used together316

with the empirical OU SGS parameterization. As in the SMR parameterization only coupling to317

neighbors and next neighbors is taken into account. The BRT-OU, for example, can be written as318
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dxi =
(
ρ

x
i +ax

i (x)+ Γ̃i jx̂I
j
)

dt + σ̃idWi . (46)

where the vector x̂I has 10 components and encompasses the values of H and HU in the five319

coarse cell from I− 2 up to I + 2, where I is the cell index corresponding to the variable xi. The320

OU parameters Γ̃ and σ̃ have been estimated using a standard maximum likelihood approach321

(Honerkamp 1994), yielding322

Γ̃i j = bx
i x̂k

(
x̂x̂T−1)

k j
, (47)

σ̃
2
i = ∆t

[
bx

i − Γ̃i jx̂I
j

]2
, (48)

with the superscript of x̂I suppressed in (47). For the LRM-OU the corresponding parameters323

have been determined in the same manner. In contrast to the estimation of the OU processes in the324

SMR by (17) and (18), here the integrated lagged covariance function could not be used, because325

the SGS effects bx
i (x,y) as such do not satisfy a prognostic equation dominated by an OU process.326

Replacing (17) and (18) by maximum-likelihood estimates would have been an option as well.327

Corresponding tests have shown a slightly deteriorated performance, however.328

4. Results329

In the following we show step by step the essential results from our various simulation exper-330

iments. Autocorrelations and spectra turned out to be qualitatively similar for momentum and331

surface-height. We therefore focus below on the latter.332
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a. DNS of the shallow-water layer333

Fig. 1 (left) displays the time dependence of the autocorrelation of the resolved variable H and334

of the SGS variable h′ in the DNS. A slowly decaying oscillation is visible in the autocorrelation335

of H. The period of this oscillation is nearly equal to the time τ = L/
√

gH ≈ 0.37 day, required336

for gravity waves to pass once through the domain. This shows that the model has some intrinsic337

dynamics and is not dominated by forcing and diffusion. The autocorrelation of the SGS variable338

h′ decays much faster to zero than that of H. The large difference in the correlation time between339

SGS and resolved variables indicates that the assumption of time-scale separation between x and340

y is met to a good agreement.341

The spatial distribution of the variance of h′ is displayed in Fig. 1 (right). The variance is lowest342

in the middle of a coarse cell, and gradually increases towards the cell boundaries. This spatial343

shape is explained in Appendix E as being due to a spatially decreasing autocorrelation of h.344

The potential-energy spectrum from the DNS is displayed in the left panel of Fig. 2. With the345

considered forcing and diffusion parameters one obtains an inertial range with spectral index 2 up346

to around wavenumber kL/2π = 64. There is a small kink in the spectrum after wavenumber 3,347

due to the forcing acting only onto the first three modes.348

The deviations from a Gaussian in the fourth order moments of H and HU are less than 4% and349

2%, respectively. In addition we find nearly vanishing odd moments (not shown). We conclude350

that the statistics of the resolved variables are close to Gaussian.351

b. OU-DNS352

As described above, the replacement 1/h→ 1/H in the SGS nonlinearities leads to the system353

(11) and (12) with strictly quadratic nonlinearities, as required for the application of the SMR354

method. Simulations with this model reproduce the DNS data nearly perfectly (not shown).355
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Replacing the SGS self-interactions by an empirical OU process leads to the system (21) and356

(22). The corresponding OU-DNS reproduces the correlations of the DNS with minor differences357

(not shown). The energy spectrum from the OU-DNS, projected onto the coarse grid is displayed358

in Fig. 2 (right). It follows the DNS spectrum for the first 7 wavenumbers and then drops below359

it. This indicates a too strong damping at high wavenumbers, which seems to be due to the intro-360

duction of the deterministic part in the OU-process. The spatial variance of h′ from the OU-DNS361

model is presented in Fig. 1 (right). It follows with small deviations the structure from the DNS362

model.363

c. Low-resolution simulations without SGS parameterization364

Before considering results from low-resolution simulations with the various SGS parameteri-365

zations, we first address low-resolution simulations without any parameterizations, to provide a366

useful reference. The time dependence of the autocorrelation function of H from these simula-367

tions is shown in Fig. 1 (left). The amplitude of the oscillation of the auto-correlation from the368

LRM simulations is significantly weaker than from the DNS and has a relative error of 6.3%, com-369

puted for time lags between 0 and 1 day. The corresponding oscillation from the BRT simulation370

is slightly stronger correlated with that from the DNS, with a relative error of 2.3%. The corre-371

sponding period matches that from the DNS whereas that from the LRM simulation is shorter.372

Comparing the corresponding energy spectra in Fig. 2 (right) one can see that the energy from the373

BRT simulation is overall less than from the DNS, and that the spectrum is steeper. In contrast374

to this, LRM simulations yield too much energy between wavenumbers 4 and 15, and too little at375

smaller scales. At all scales LRM simulations yield more energy than the BRT simulations.376
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The relative errors in Table 1 show that the LRM simulation significantly overestimates the377

all statistical moments, the fourth moment in HU even by 111.9%. The BRT simulation yields378

moments that are too small, in the case of the fourth moment by 29%.379

We also verified numerically that in order to reproduce the spectra of the first 32 wavenumbers380

in the DNS with N = 512 grid points, it is possible to perform low-resolution DNS with at least381

256 spatial points. However, further reducing the number of points in the low-resolution DNS382

significantly corrupts the spectra of the first 32 wavenumbers. Thus, this demonstrates the need383

for SGS parameterizations if one wants to reduce the spatial resolution beyond N = 256.384

d. Low-resolution simulations with SGS parameterization385

Energy spectrum. The potential-energy spectra obtained from low-resolution simulations with386

the different parameterizations are shown in Fig. 3 (right). The overall qualitative behavior of387

the shallow-water layer can be reproduced with the SMR parameterization but there is too much388

energy in scales up to around wavenumber 12 and too little energy in higher wavenumbers. On the389

other hand, the bare truncation model with empirical stochastic corrections (BRT-OU) and the low-390

resolution model (LRM-OU) do not reproduce all the details of the spectra sufficiently accurately.391

In particular, the LRM-OU spectrum contains significantly too little energy in all wave numbers.392

The BRT-OU simulation can reproduce the true spectrum well in the first 15 wavenumbers but393

fails completely at higher wavenumbers.394

Moments. The statistical moments from the various simulations are summarized in Table 1.395

In general all closures show high relative errors, the empirical OU parameterizations underesti-396

mate and the SMR parameterization overestimates the moments. Errors in the HU-moments are397

smallest for the low-resolution simulation using the SMR parameterization. In the H-moments398

BRT-SMR has lower errors than LRM-OU but larger than BRT-OU. The BRT-SMR model over-399
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estimates the fluctuations in the coarse H-variable, which is consistent with the result for potential400

energy spectra discussed above. This implies that the SGS stochastic forcing representing the401

energy backscatter is too strong.402

Improvement of Energy Balance. To further improve the performance of our SGS parametriza-403

tion using the stochastic mode reduction, we consider BRT-SMR model with reduced SGS stochas-404

tic forcing. This is motivated by the fact that there are several assumptions in the SMR approach405

(e.g. time-scale separation, representing the fast variables to the leading order by the OU process,406

polynomial form approximation of the interaction terms in the equation for momentum). Thus, we407

consider BRT-SMR models where the stochastic part in the SMR parameterization is reduced by408

40% or completely neglected. Stochastic terms in the SMR parametrization represent the energy409

backscatter of small scales onto resolved large scales. It has been recognized that proper mod-410

eling of this phenomena is particularly important in the context of geophysical turbulence (see411

e.g. Palmer (2001); Palmer et al. (2009); Berner et al. (2009)). Therefore, we study how well the412

SMR parametrization reproduces this process and whether various approximations introduced in413

the context of applying the SMR to the shallow water equation impose additional sensitivity of the414

BRT-SMR model to the stochasticity of the closure.415

The reduction of the stochastic part by 40% (defining BRT-SMR-0.6) significantly reduces the416

error in the variance of H to 2.9% and of HU to −5.2%, see Table 1. To avoid extensive tuning417

of the BRT-SMR model, we consider the uniform SGS noise reduction of both variables. Alterna-418

tively, SGS noises on H and HU can be reduced by a different percentage, thus further optimizing419

the performance of the BRT-SMR model. With the choice of the 40% reduction of SGS noise, the420

performance in the energy spectrum can be improved for the first 8 wave numbers, but for higher421

wave numbers the energy content drops, see Fig. 4. However, we wold like to emphasize that the422

first 8 wavenumbers contain approximately 97% of the potential energy. From Fig. 4 it is also423
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visible that already the deterministic part of the closure can significantly improve the spectrum as424

compared to BRT.425

Correlation. The time autocorrelations from low-resolution simulations (BRT or LRM) with426

either the empirical OU or the SMR parameterization are depicted in Fig. 3 (left). One can see427

that application of the SMR parameterizations leads reproducing the autocorrelation from the DNS428

with small differences in amplitude. The relative error of the correlation is 3.4%. Application of429

the OU parameterization in the LRM leads to simulations with an oscillation in the autocorrelation430

that is too weak in amplitude and exhibits a small phase shift, whereas use of the OU approach431

in the BRT leads to simulations with an autocorrelation similar to that obtained with the SMR432

parameterization. The relative error of the correlation is 10.5% for the LRM-OU simulation and433

6.6% for the BRT-OU simulation. The SGS noise reduction in the BRT-SMR-0.6 model does434

not significantly affect the correlation function (not depicted for this model). The correlation435

function for the BRT-SMR-0.6 overlaps with the correlation function computed using the BRT-436

SMR. This can be intuitively understood since the correlation function in many stochastic models437

is determined primarily by the strength of the deterministic terms.438

e. Scale adaptivity439

The advantage of the SMR parameterization is that it can be adapted easily to changes in the440

model setup, and in many situations it does not have to be recalculated. This has been investigated441

by considering larger averaging intervals of n = 16, 32 , resulting in different spatial resolutions442

Nc = N/n = 16, 32. To adjust the SMR closure to the changed resolution, we use (D2) and (D4)443

from the Appendix D. Note that no re-determination of the model is necessary. In contrast to this,444

no modification rule exists for the empirical closures in the BRT-OU and the LRM-OU model. We445
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keep those parameterizations unchanged for the considered cases. Whereas the LRM-OU remains446

stable, the BRT-OU is unstable in both cases.447

The potential energy spectra from integrations of the resulting stable models are displayed in Fig.448

5. For comparison the corresponding DNS projection is shown as well. In both cases integration of449

the low-resolution models with SGS parameterization yield less energy in the resolved flow than450

the DNS. However, application of the SMR SGS parameterization leads to better agreement with451

the DNS, especially for n = 16. Both low-resolution simulations can capture the time correlation452

well (not shown).453

5. Conclusion454

The applicability of subgrid-scale (SGS) parameterizations to a wide range of parameters of a455

dynamical system such as the atmosphere, and their ability to be easily used at different model con-456

figurations, requires that they are based on first principles as much as possible. Stochastic mode457

reduction (SMR) as suggested by Majda et al. (2001, 2002, 2003), i.e. homogenization applied458

to a system with its nonlinear fast-variable self-interactions replaced by an empirical Ornstein-459

Uhlenbeck (OU) process, is a promising option in this direction. Geophysical applications of the460

SMR so far were performed always in spectral space (Franzke et al. 2005; Franzke and Majda461

2006). However, in many applications, such as ocean modeling or regional climate modeling,462

SGS parameterizations in physical space are required. In order to construct such parameterization463

we use the local approach suggested by Dolaptchiev et al. (2013a,b), and tested within the frame-464

work of the Burgers equation. A central aspect of this approach is the discrimination, within a465

finite-volume formulation of the high-resolution dynamics, between slowly varying spatial aver-466

ages, that are resolved explicitly, and more rapidly varying deviations from those, that are to be467

parameterized.468
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As a next step towards the application of this technique to real atmospheric flows, our work469

validates the applicability of the SMR in the context of one-dimensional shallow-water (1DSW)470

flow. This introduces two general features. (1) Gravity waves are included as well as (2) high-471

order non-polynomial nonlinearities that generally affect compressible flows. After the validation472

of the required time-scale separation between local averages and small-scale flow, the latter issue473

has been handled by replacing, in all dynamical terms affecting or affected by the fast small-474

scale flow, the inverse of the water-column height by the inverse of its global equilibrium value.475

This limits the corresponding nonlinearities to quadratic. Further replacing all small-scale self-476

interactions by an empirical OU process yields a representation of the dynamics that allows model477

simulations in rather good agreement with simulations of the unmodified 1DSW equations. We478

could hence proceed and apply the homogenization technique to obtain an explicit low-resolution479

model for the local averages, with an SMR SGS parameterization of the small-scale flow coupling480

only a small number of neighboring cells.481

This model has been validated against data from high-resolution simulations of 1DSW flow. It is482

shown that the SMR SGS parameterization improves the energy spectrum at the smaller resolved483

scales in comparison with both simulations without SGS parameterizations and simulations using484

an empirical OU SGS parameterization. In the error of some statistical moments no clear ben-485

efit of the SMR SGS parameterization is present. However, we demonstrated that the error can486

be considerably lowered by diminishing the stochasticity in the SMR closure. In particular, the487

variance error of the SMR SGS model can be reduced to 2.9% in H. We also found that this488

comes along with less energy at high wavenumbers. We conjecture that the performance of the489

BRT-SMR model can be improved further by empirically adjusting the coefficients of the SMR490

SGS parametrization. Finally, we also show that the closure can easily be adapted to changes in491

the model parameters. This enables a scale awareness, which allows to utilize the SMR SGS pa-492
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rameterization for different spatial resolutions and leads to improvements compared to empirical493

SGS schemes.494

In a related study within the framework of the Lorenz 96 model, Vissio and Lucarini (2017)495

have recently demonstrated parameter-awareness of a parameterization derived using response496

theory (Wouters and Lucarini 2012) by changing the time-scale separation between resolved and497

unresolved scales. How far this extends to our setting, where scale-adaptivity is considered with498

regard to the number of resolved modes, remains to be investigated. Moreover, as shown by499

Wouters et al. (2016) for comparatively simple models, the SGS scheme of (Wouters and Lucarini500

2012) does outperform the SMR parameterization at smaller time lags, but on longer time scales501

it converges to the SMR result in the limit of infinite time scale separation. Still, it would be502

interesting to extend the work of Demaeyer and Vannitsem (2018) by comparing both approaches503

in more complex applications.504

Motivated by the DIA closure of Frederiksen and Davies (1997), Frederiksen and Kepert (2006)505

applied a stochastic modeling approach accounting for memory effects of the turbulent eddies and506

constructed SGS parameterization from a high-resolution simulation. The resulting SGS model is507

local in spectral space and includes linear eddy drain viscosity and stochastic backscatter viscosity.508

The same approach was successfully used by Kitsios et al. (2012, 2013) to construct scale-aware509

SGS parameterizations, which reproduce the spectra exactly. Interestingly, the SMR provides510

additional nonlinear deterministic correction terms and multiplicative noise terms. Such terms511

might become important in situations where effects due to topography, intermittency or large-512

scale flow are relevant. In addition, the scaling laws found by Kitsios et al. (2012, 2013) for the513

eddy viscosities suggest that similar scaling laws might be valid for the parameters of the OU514

process in Fourier space, used in the SMR approach. This might improve further the results on515

scale-adaptivity presented here.516

29



Potentially an issue is that we had to increase diffusivity in order to stabilize the low-resolution517

model with SMR SGS parameterization. This is a well known issue with purely empirical SGS518

parameterizations (e.g. Achatz and Schmitz 1997). In the present semi-analytical approach it519

might be overcome by using the energy conserving discretization of Fjordholm et al. (2011). As520

pointed out by Majda et al. (2009) there is a connection between energy conservation by the521

discretized nonlinearities and the cubic damping term in the SMR SGS parameterization. Indeed,522

in the studies of Franzke et al. (2005); Franzke and Majda (2006); Dolaptchiev et al. (2013a) the523

discrete treatment of the nonlinear terms conserves energy and the resulting SMR SGS schemes524

are stable.525

Even from the present results, however, we conclude that it appears worthwhile further mov-526

ing towards the application of the SMR SGS parameterizations to low-resolution simulations in527

general compressible flows. Next step would be to increase the complexity by considering two-528

dimensional shallow-water flow and by including rotational effects. Such system contains disper-529

sive inertial gravity waves as well as geostrophic balanced flow. One interesting question in this530

regard is if the effect of high-frequency, small-scale gravity waves on the large-scale gravity waves531

and geostrophic flow can be parameterized using the present local SMR approach.532
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APPENDIX A538

Interaction coefficients539
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To define the interaction coefficients in (11), (12), the following notation is used540

(
Lxz

lmzm,Bxxz
lmnxmzn,Bxzz

lmnzmzn
)
=


(
LHz,BHxz,BHzz) if xl denotes HI(
LHUz,BHUxz,BHUzz) if xl denotes HUI

, (A1)

(
Lzz

lmzm,Lzx
lmxm

)
=


(

Lh′z,Lh′x
)

if zl denotes h′i(
Lhu′z,Lhu′x

)
if zl denotes hu′i

, (A2)

(
Bzxx

lmnxmxn,Bzxz
lmnxmzn,Bzzz

lmnzmzn
)
=


(

Bh′xx,Bh′xz,Bh′zz
)

if zl denotes h′i(
Bhu′xx,Bhu′xz,Bhu′zz

)
if zl denotes hu′i

, (A3)

with I ∈ {0,1, ...,Nc−1} and i ∈ {0,1, ...,N−1}. The linear interaction coefficients read541

LHz =− 1
2n∆x

(
hu′n(I+1)+hu′n(I+1)−1−hu′nI−hu′nI−1

)
(A4)

+
ν

n∆x2

(
h′n(I+1)−h′n(I+1)−1−h′nI +h′nI−1

)
LHUz =

ν

n∆x2

(
hu′n(I+1)−hu′n(I+1)−1−hu′nI +hu′nI−1

)
(A5)

Lh′x =− 1
2∆x

(
HUI[i+1]−HUI[i−1]

)
+

ν

∆x2

(
HI[i−1]−2HI[i]+HI[i+1]

)
(A6)

+
1

2n∆x

(
HUI[i]+1−HUI[i]−1

)
− ν

n∆x2

(
HI[i]+1−2HI[i]+HI[i]−1

)
(A7)

Lhu′x =
ν

∆x2

(
HUI[i−1]−2HUI[i]+HUI[i+1]

)
(A8)

− ν

n∆x2

(
HUI[i]+1−2HUI[i]+HUI[i]−1

)
(A9)

Lh′z =− 1
2∆x

(
hu′i+1−hu′i−1

)
+

ν

∆x2

(
h′i−1−2h′i +h′i+1

)
−LHz (A10)

Lhu′z =
ν

∆x2

(
hu′i−1−2hu′i +hu′i+1

)
−LHUz , (A11)

where in (A10), (A11) the terms LHz and LHUz are given in (A4), (A5), but with the index I542

replaced by I[i]. The nonlinear interaction coefficients read543
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BHxz = BHzz = Bh′xx = Bh′xz = Bh′zz = 0 (A12)

BHUxz =− 1
n∆x

[
1

H

(
HUI+1hu′n(I+1)+HUIhu′n(I+1)−1 (A13)

−HUIhu′nI−HUI−1hu′nI−1

)
+

g
2

(
HI+1h′n(I+1)+HIh′n(I+1)−1−HIh′nI−HI−1h′nI−1

)]

BHUzz =− 1
2n∆x

[
1

H

(
(hu′n(I+1))

2 +(hu′n(I+1)−1)
2− (hu′nI)

2− (hu′nI−1)
2
)

(A14)

+
g
2

(
(h′n(I+1))

2 +(h′n(I+1)−1)
2− (h′nI)

2− (h′nI−1)
2
)]

Bhu′xx =− 1
2∆x

(
1

H

(
HU2

I[i+1]−HU2
I[i−1]

)
+

g
2

(
H2

I[i+1]−H2
I[i−1]

))
(A15)

+
1

2n∆x

[
1

H

(
HU2

I[i]+1−HU2
I[i]−1

)
+

g
2

(
H2

I[i]+1−H2
I[i]−1

)]
(A16)

Bhu′xz =− 1
∆x

[
1

H

(
HUI[i+1]hu′i+1−HUI[i−1]hu′i−1

)
+

g
2
(
HI[i+1]h

′
i+1−HI[i−1]h

′
i−1
)]

−BHUxz (A17)

Bhu′zz =− 1
2∆x

(
1

H

(
(hu′i+1)

2− (hu′i−1)
2)+ g

2
(
(h′i+1)

2− (hu′i−1)
2))−BHUzz , (A18)

where in (A17), (A18) the terms BHUxz and BHUzz are given in (A13), (A14), but with the index544

I replaced by I[i].545

APPENDIX B546

Null-space projection and inverse of the OU backward Fokker-Planck operator547

To determine the projection operator P and the inverse operator L−1
1 one can consider an auxiliary548

process described by the backward FPE ∂t χ = L1χ with the conditional PDF χ(ỹ,0 | y,τ). The549

invariant measure of this process ps(ỹ) = lim
τ→−∞

χ(ỹ,0 | y,τ) defines the projection operator550
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(Pg)(x) =
∫

dy g(x,y)ps(y) = 〈g(x,y)〉 , (B1)

with the expectation 〈·〉 of g(x,y) with respect to the invariant measure ps. The inverse operator551

L−1
1 applied onto a function f (x,y) is found to be given by552

(
L−1

1 f
)
(x,y) =

∫
∞

0
dτ

∫
dy f (x, ỹ)χ(ỹ,τ | y,0) . (B2)

Both operators applied consecutively yield553

(
PgL−1

1 f
)
(x) =

∫
dy g(x,y)ps(y)

∫
∞

0
dτ

∫
dỹ f (x, ỹ)χ(ỹ,τ | y,0)

=
∫

∞

0
dτ

∫
dy g(x,y)ps(y)

∫
dỹ f (x, ỹ)χ(ỹ,τ | y,0)

=
∫

∞

0
dτ 〈g(x,y) f (x, ỹ(τ))〉 , (B3)

where in the lagged covariance in the last line ỹ(τ) is understood to be an OU trajectory with554

initial condition ỹ(0) = y.555

APPENDIX C556

Solvability condition557

The solvability condition (34) can be rewritten to Pbx
i ∂xi p

0 = 0 since p0 = p0(x). It is fulfilled if558

the even stronger condition Pbx
i = 0 holds. This is the case here. Using (23), defining559

κ jk = R jlRkm〈ylym〉 (C1)

and inserting the transformation z = Ry, one obtains with 〈yi〉= 0560

Pbx
i = Bxyy

i jk 〈y jyk〉= Bxzz
i jkκ jk = Bxzz

i j jκ j j . (C2)
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We have used in the last step that Bxzz
i jk = Bxzz

i jkδ jk, as can be seen from Appendix A. Since Bxzz
i j jκ j j561

is a difference between fluxes at the right and at the left of a cell, the total sum over i vanishes562

∑
i

Bxzz
i j jκ j j =0 . (C3)

The homogeneity of 〈ylym〉 implies that each element in the sum is identical and thus must vanish.563

This proofs the solvability condition.564

565

APPENDIX D566

The SMR SGS parameterization for changed resolution567

The SMR SGS parameterization can be adapted to different coarse grid resolutions without any568

recalculation. This can be achieved by collecting interaction coefficients proportional to different569

powers of n. For example the linear coefficients Lyx can be written as Lyx = L̃yx + 1
n L̂yx, where570

L̂yx results from all terms in Lyx multiplied by 1
n and L̃yx from terms independent of n. Similarly571

all other coefficients can be split in this way, in particular we have Lxy = 1
n L̂xy, Bxxy = 1

n B̂xxy, etc..572

This separation leads to the deterministic closure573

βi =

(
1
n

L̂xy
m j +

1
n

B̂xxy
ml jxl

)
1
n

B̂xxy
imk(CS) jk

+

([
L̃yx

mo +
1
n

L̂yx
mo)

]
xo +

[
B̃yxx

mop +
1
n

B̂yxx
mop

]
xoxp

)
1
n

(
L̂xy

ik + B̂xxy
i jk x j

)
〈yyT 〉−1

mn(CS)nk

+
1
n

B̂xyy
i jk

[
B̃yxy

mpo +
1
n

B̂yxy
mpo

]
xp〈yyT 〉−1

mn(CT )on jk (D1)

=
1
n

β̃i +
1
n2 β̂i (D2)
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where in the last steps the results are summarized with respect to the power of n. The effective574

stochastic closure analogously yields575

dξi ≈
1
n

√
2B̂xyy

i jn (CT ) jnklB̂
xyy
ikl dW 1

i +
1
n

√
2
(

L̂xy
in + B̂xxy

i jn x j

)
(CS)nk

(
L̂xy

ik + B̂xxy
ilk xl

)
dW 2

i (D3)

=
1
n

dξ̂i . (D4)

576

APPENDIX E577

Spatial shape of the SGS variance578

In continuous space the surface-height mean in the first coarse cell, with length Lc, and the corre-579

sponding SGS deviations can be written as580

H =
1
Lc

∫ Lc

0
h(x) dx , h′(x) = h(x)−H . (E1)

This leads to spatial dependence in the variance of h′581

h′(x)2−h′
2
= h(x)2−2h(x)H +H2−h′

2
, (E2)

Due to spatial homogeneity of h(x) and h′ = 0, only the second term can be assumed to be582

spatially dependent. Now by assuming an exponentially decaying spatial correlation h(x)h(x′) ∼583

exp(−α|x− x′|), with a decay rate α > 0, the middle term becomes584
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h(x)H =
1
Lc

∫ Lc

0
h(x)h(x′) dx′

∼ 1
Lc

{∫ x

0
exp
[
α(x′− x)

]
dx′+

∫ Lc

x
exp
[
α(x− x′)

]
dx′
}

=
1

αLc

{
2− e−αx− eα(x−Lc)

}
=

2
αLc

{
1− e−

αLc
2 cosh

[
α

(
x− Lc

2

)]}
, (E3)

describing the characteristic U-shape of the fine variable variance in the first coarse cell x ∈585

[0,Lc]. The same considerations hold for all other coarse cells.586
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TABLE 1. First column in both tables shows the spatially averaged second (k = 2) and fourth (k = 4) order

centered statistical moments values of DNS. The other columns contain the relative errors of different low-

resolution simulations. Upper table for H and lower table for HU .

790

791

792

H DNS LRM BRT LRM-OU BRT-OU BRT-SMR BRT-SMR-0.6 BRT-SMR-0.0

k = 2 2.846 (km)2 0.138 -0.167 -0.589 -0.125 0.195 0.029 -0.049

k = 4 23.56 (km)4 0.542 -0.290 -0.821 -0.207 0.455 0.080 -0.079

HU DNS LRM BRT LRM-OU BRT-OU BRT-SMR BRT-SMR-0.6 BRT-SMR-0.0

k = 2 2082 (103(km)2/d)2 0.255 -0.159 -0.597 -0.141 0.099 -0.052 -0.124

k = 4 1.277E+07 (103(km)2/d)4 1.119 -0.274 -0.834 -0.251 0.185 -0.119 -0.247
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TABLE 2. Summary of the different models used

DNS Direct Numerical Simulation with spatial resolution of N cells

ẋi = ρx
i +ax

i (x)+bxz
i (x,z); żi = bz

i (x,z)+ cz
i (z)

BRT Bare-Truncation Model with spatial resolution of Nc = N/n

ẋi = ρx
i +ax

i (x)

LRM Low-Resolution Model

DNS with spatial resolution of Nc = N/n.

OU-DNS DNS with 1
h -approximation and SGS self-interactions replaced by an OU process

ẋi = ρx
i +ax

i (x)+bx
i (x,y), ẏi = by

i (x,y)+Λi jy j +ΣiẆi.

BRT-OU BRT with empirical Ornstein-Uhlenbeck parameterization

dxi =
(

ρx
i +ax

i (x)+ Γ̃i j x̂I
j

)
dt + σ̃idWi.

LRM-OU LRM with empirical Ornstein-Uhlenbeck parameterization

BRT-SMR BRT with Stochastic Mode Reduction parameterization

dxi = [ρx
i +ax

i (x)+βi(x)]dt +dξi(x)

BRT-SMR-0.6 BRT-SMR with stochastic forcing reduced to 60%

dxi = [ρx
i +ax

i (x)+βi(x)]dt +0.6dξi(x).

BRT-SMR-0.0 BRT-SMR without stochastic forcing

dxi = [ρx
i +ax

i (x)+βi(x)]dt
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FIG. 1. Left: spatially averaged time autocorrelation of the resolved variable H and SGS variable h′. Results

from the DNS and two low-resolution simulations without SGS parameterizations (LRM and BRT). On the time

axis the characteristic gravity wave time τ is marked, see Sec. 4 a. In the upper right corner a shorter time

interval is presented, which resolves the decay of h′. Right: the variance of the SGS variable h′ for 32 fine grid

points and an averaging interval n = 8. Results from the DNS and OU-DNS.
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FIG. 3. The spatially averaged time autocorrelation (left) and the potential energy spectrum (right) from DNS

and three low-resolution simulations with SGS parameterizations (LRM-OU, BRT-OU, BRT-SMR).
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FIG. 4. The potential energy spectrum in DNS, BRT, BRT-SMR, BRT-SMR with a damped stochastic forcing

dξ → 0.6dξ (BRT-SMR-0.6) and BRT-SMR with neglected stochastic forcing dξ → 0 (BRT-SMR-0.0).
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FIG. 5. The Spectrum for an averaging interval of n = 16 (left) and n = 32 (right) in DNS, LRM-OU and

BRT-SMR. The simulations with LRM-OU and BRT-SMR have a resolution of Nc = 32 (left) and Nc = 16

(right).
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